Extending ensemble Kalman filter algorithms to assimilate observations with an unknown time offset

Data assimilation (DA), the statistical combination ofcomputer models with measurements, is applied in a variety of scientificfields involving forecasting of dynamical systems, most prominently inatmospheric and ocean sciences. The existence of misreported or unknownobservation times (time error) poses a unique and interesting problem forDA. Mapping observations to incorrect times causes bias in the prior stateand affects assimilation. Algorithms that can improve the performance ofensemble Kalman filter DA in the presence of observing time error aredescribed. Algorithms that can estimate the distribution of time error arealso developed. These algorithms are then combined to produce extensions toensemble Kalman filters that can both estimate and correct for observationtime errors. A low-order dynamical system is used to evaluate theperformance of these methods for a range of magnitudes of observation timeerror. The most successful algorithms must explicitly account for thenonlinearity in the evolution of the prediction model.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Software #1 : jlaucar/npg_gorokhovsky: Data and code used to generate figures in Gorokhovsky and Anderson 2023

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Gorokhovsky, Elia
Anderson, Jeffrey L.
Publisher UCAR/NCAR - Library
Publication Date 2023-02-07T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:19:28.769879
Metadata Record Identifier edu.ucar.opensky::articles:26054
Metadata Language eng; USA
Suggested Citation Gorokhovsky, Elia, Anderson, Jeffrey L.. (2023). Extending ensemble Kalman filter algorithms to assimilate observations with an unknown time offset. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d78919s4. Accessed 19 June 2025.

Harvest Source