A review of Secondary Organic Aerosol (SOA) formation from isoprene

Recent field and laboratory evidence indicates that the oxidation of isoprene, (2-methyl-1,3-butadiene, C₅H₈) forms secondary organic aerosol (SOA). Global biogenic emissions of isoprene (600 Tg yr⁻¹) are sufficiently large that the formation of SOA in even small yields results in substantial production of atmospheric particulate matter, likely having implications for air quality and climate. Here we present a review of field measurements, experimental work, and modeling studies aimed at understanding the mechanisms, yield, and atmospheric importance of isoprene-derived SOA. SOA yields depend on a number of factors, including organic aerosol loading (Mo), NOx level (RO₂ chemistry), and, because of the importance of multigenerational chemistry, the degree of oxidation. These dependences are not always included in SOA modules used in atmospheric transport models, and instead most yield parameterizations rely on a single set of chamber experiments (carried out over a limited range of conditions); this may lead to very different estimates of the atmospheric importance of isoprene SOA. New yield parameterizations, based on all available laboratory data (Mo=0-50 μg m⁻³), are presented here, so that SOA formation may be computed as a function of Mo, NOx level, and temperature. Current research needs and future research directions are identified.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Carlton, A.
Wiedinmyer, Christine
Kroll, J.
Publisher UCAR/NCAR - Library
Publication Date 2009-07-27T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:57:25.632366
Metadata Record Identifier edu.ucar.opensky::articles:15364
Metadata Language eng; USA
Suggested Citation Carlton, A., Wiedinmyer, Christine, Kroll, J.. (2009). A review of Secondary Organic Aerosol (SOA) formation from isoprene. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7cf9r4b. Accessed 26 June 2025.

Harvest Source