North Atlantic Oscillation response in GeoMIP experiments G6solar and G6sulfur: Why detailed modelling is needed for understanding regional implications of solar radiation management

The realization of the difficulty of limiting global-mean temperatures to within 1.5 or 2.0 degrees C above preindustrial levels stipulated by the 21st Conference of Parties in Paris has led to increased interest in solar radiation management (SRM) techniques. Proposed SRM schemes aim to increase planetary albedo to reflect more sunlight back to space and induce a cooling that acts to partially offset global warming. Under the auspices of the Geoengineering Model Intercomparison Project, we have performed model experiments whereby global temperature under the high-forcing SSP5-8.5 scenario is reduced to follow that of the medium-forcing SSP2-4.5 scenario. Two different mechanisms to achieve this are employed: the first via a reduction in the solar constant (experiment G6solar) and the second via modelling injections of sulfur dioxide (experiment G6sulfur) which forms sulfate aerosol in the stratosphere. Results from two state-of-the-art coupled Earth system models (UKESM1 and CESM2-WACCM6) both show an impact on the North Atlantic Oscillation (NAO) in G6sulfur but not in G6solar. Both models show a persistent positive anomaly in the NAO during the Northern Hemisphere winter season in G6sulfur, suggesting an increase in zonal flow and an increase in North Atlantic storm track activity impacting the Eurasian continent and leading to high-latitude warming over Europe and Asia. These results are broadly consistent with previous findings which show similar impacts from stratospheric volcanic aerosol on the NAO and emphasize that detailed modelling of geoengineering processes is required if accurate impacts of SRM effects are to be simulated. Differences remain between the two models in predicting regional changes over the continental USA and Africa, suggesting that more models need to perform such simulations before attempting to draw any conclusions regarding potential continental-scale climate change under SRM.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Jones, Andy
Haywood, Jim M.
Jones, Anthony C.
Tilmes, Simone
Kravitz, Ben
Robock, Alan
Publisher UCAR/NCAR - Library
Publication Date 2021-01-29T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:13:54.479414
Metadata Record Identifier edu.ucar.opensky::articles:24061
Metadata Language eng; USA
Suggested Citation Jones, Andy, Haywood, Jim M., Jones, Anthony C., Tilmes, Simone, Kravitz, Ben, Robock, Alan. (2021). North Atlantic Oscillation response in GeoMIP experiments G6solar and G6sulfur: Why detailed modelling is needed for understanding regional implications of solar radiation management. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7qn6b4d. Accessed 19 July 2025.

Harvest Source