Analysis of a dryline during IHOP: Implications for convection initiation

A detailed analysis of a dryline that formed on 22 May 2002 during the International H₂O Project (IHOP) is presented. The dryline was classified as a null case since air parcels lifted over the convergence boundary were unable to reach the level of free convection preventing thunderstorms from forming. A secondary dryline associated with a distinct moisture discontinuity developed to the west of the primary dryline. The primary dryline exhibited substantial along-frontal variability owing to the presence of misocyclones. This nonlinear pattern resembled the precipitation core/gap structure associated with cold fronts during one of the analysis times although the misocyclones were positioned within the gap regions. Radar refractivity has been recently shown to accurately retrieve the low-level moisture fields within the convective boundary layer; however, its use in forecasting the initiation of convection has been restricted to qualitative interpretations. This study introduces the total derivative of radar refractivity as a quantitative parameter that may improve nowcasts of convection. Although no storms developed on this day, there was a tendency for maxima of the total derivative to be near regions where cumulus clouds were developing near a convergence boundary.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2009 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Wakimoto, Roger M.
Murphey, H.
Publisher UCAR/NCAR - Library
Publication Date 2009-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T15:32:02.603919
Metadata Record Identifier edu.ucar.opensky::articles:15500
Metadata Language eng; USA
Suggested Citation Wakimoto, Roger M., Murphey, H.. (2009). Analysis of a dryline during IHOP: Implications for convection initiation. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7sx6f8t. Accessed 09 August 2025.

Harvest Source