Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): A protocol for investigating the role of stratospheric polar vortex disturbances in subseasonal to seasonal forecasts

Major disruptions of the winter season, high-latitude stratospheric polar vortices can result in stratospheric anomalies that persist for months. These sudden stratospheric warming events are recognized as an important potential source of forecast skill for surface climate on subseasonal to seasonal timescales. Realizing this skill in operational subseasonal forecast models remains a challenge, as models must capture both the evolution of the stratospheric polar vortices in addition to their coupling to the troposphere. The processes involved in this coupling remain a topic of open research. We present here the Stratospheric Nudging And Predictable Surface Impacts (SNAPSI) project. SNAPSI is a new model intercomparison protocol designed to study the role of the Arctic and Antarctic stratospheric polar vortex disturbances for surface predictability in subseasonal to seasonal forecast models. Based on a set of controlled, subseasonal ensemble forecasts of three recent events, the protocol aims to address four main scientific goals. First, to quantify the impact of improved stratospheric forecasts on near-surface forecast skill. Second, to attribute specific extreme events to stratospheric variability. Third, to assess the mechanisms by which the stratosphere influences the troposphere in the forecast models. Fourth, to investigate the wave processes that lead to the stratospheric anomalies themselves. Although not a primary focus, the experiments are furthermore expected to shed light on coupling between the tropical stratosphere and troposphere. The output requested will allow for a more detailed, process-based community analysis than has been possible with existing databases of subseasonal forecasts.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hitchcock, Peter
Butler, Amy
Charlton-Perez, Andrew
Garfinkel, Chaim I.
Stockdale, Tim
Anstey, James
Mitchell, Dann
Domeisen, Daniela I. V.
Wu, Tongwen
Lu, Yixiong
Mastrangelo, Daniele
Malguzzi, Piero
Lin, Hai
Muncaster, Ryan
Merryfield, Bill
Sigmond, Michael
Xiang, Baoqiang
Jia, Liwei
Hyun, Yu-Kyung
Oh, Jiyoung
Specq, Damien
Simpson, Isla R.
Richter, Jadwiga H.
Barton, Cory
Knight, Jeff
Lim, Eun-Pa
Hendon, Harry
Publisher UCAR/NCAR - Library
Publication Date 2022-07-04T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:37:00.993801
Metadata Record Identifier edu.ucar.opensky::articles:25550
Metadata Language eng; USA
Suggested Citation Hitchcock, Peter, Butler, Amy, Charlton-Perez, Andrew, Garfinkel, Chaim I., Stockdale, Tim, Anstey, James, Mitchell, Dann, Domeisen, Daniela I. V., Wu, Tongwen, Lu, Yixiong, Mastrangelo, Daniele, Malguzzi, Piero, Lin, Hai, Muncaster, Ryan, Merryfield, Bill, Sigmond, Michael, Xiang, Baoqiang, Jia, Liwei, Hyun, Yu-Kyung, Oh, Jiyoung, Specq, Damien, Simpson, Isla R., Richter, Jadwiga H., Barton, Cory, Knight, Jeff, Lim, Eun-Pa, Hendon, Harry. (2022). Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): A protocol for investigating the role of stratospheric polar vortex disturbances in subseasonal to seasonal forecasts. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7765k26. Accessed 25 June 2025.

Harvest Source