Towards an end-to-end analysis and prediction system for weather, climate, and marine applications in the Red Sea

The Red Sea, home to the second-longest coral reef system in the world, is a vital resource for the Kingdom of Saudi Arabia. The Red Sea provides 90% of the Kingdom's potable water by desalinization, supporting tourism, shipping, aquaculture, and fishing industries, which together contribute about 10%-20% of the country's GDP. All these activities, and those elsewhere in the Red Sea region, critically depend on oceanic and atmospheric conditions. At a time of mega-development projects along the Red Sea coast, and global warming, authorities are working on optimizing the harnessing of environmental resources, including renewable energy and rainwater harvesting. All these require high-resolution weather and climate information. Toward this end, we have undertaken a multipronged research and development activity in which we are developing an integrated data-driven regional coupled modeling system. The telescopically nested components include 5-km- to 600-m-resolution atmospheric models to address weather and climate challenges, 4-km- to 50-m-resolution ocean models with regional and coastal configurations to simulate and predict the general and mesoscale circulation, 4-km- to 100-m-resolution ecosystem models to simulate the biogeochemistry, and 1-km- to 50-m-resolution wave models. In addition, a complementary probabilistic transport modeling system predicts dispersion of contaminant plumes, oil spill, and marine ecosystem connectivity. Advanced ensemble data assimilation capabilities have also been implemented for accurate forecasting. Resulting achievements include significant advancement in our understanding of the regional circulation and its connection to the global climate, development, and validation of long-term Red Sea regional atmospheric-oceanic-wave reanalyses and forecasting capacities. These products are being extensively used by academia, government, and industry in various weather and marine studies and operations, environmental policies, renewable energy applications, impact assessment, flood forecasting, and more.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2021 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hoteit, Ibrahim
Abualnaja, Yasser
Afzal, Shehzad
Ait-El-Fquih, Boujemaa
Akylas, Triantaphyllos
Antony, Charls
Dawson, Clint
Asfahani, Khaled
Brewin, Robert J.
Cavaleri, Luigi
Cerovecki, Ivana
Cornuelle, Bruce
Desamsetti, Srinivas
Attada, Raju
Dasari, Hari
Sanchez-Garrido, Jose
Genevier, Lily
El Gharamti, Mohamad
Gittings, John A.
Gokul, Elamurugu
Gopalakrishnan, Ganesh
Guo, Daquan
Hadri, Bilel
Hadwiger, Markus
Hammoud, Mohammed Abed
Hendershott, Myrl
Hittawe, Mohamad
Karumuri, Ashok
Knio, Omar
Köhl, Armin
Kortas, Samuel
Krokos, George
Kunchala, Ravi
Issa, Leila
Lakkis, Issam
Langodan, Sabique
Lermusiaux, Pierre
Luong, Thang
Ma, Jingyi
Le Maitre, Olivier
Mazloff, Matthew
El Mohtar, Samah
Papadopoulos, Vassilis P.
Platt, Trevor
Pratt, Larry
Raboudi, Naila
Racault, Marie-Fanny
Raitsos, Dionysios E.
Razak, Shanas
Sanikommu, Sivareddy
Sathyendranath, Shubha
Sofianos, Sarantis
Subramanian, Aneesh
Sun, Rui
Titi, Edriss
Toye, Habib
Triantafyllou, George
Tsiaras, Kostas
Vasou, Panagiotis
Viswanadhapalli, Yesubabu
Wang, Yixin
Yao, Fengchao
Zhan, Peng
Zodiatis, George
Publisher UCAR/NCAR - Library
Publication Date 2021-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:14:35.397297
Metadata Record Identifier edu.ucar.opensky::articles:24416
Metadata Language eng; USA
Suggested Citation Hoteit, Ibrahim, Abualnaja, Yasser, Afzal, Shehzad, Ait-El-Fquih, Boujemaa, Akylas, Triantaphyllos, Antony, Charls, Dawson, Clint, Asfahani, Khaled, Brewin, Robert J., Cavaleri, Luigi, Cerovecki, Ivana, Cornuelle, Bruce, Desamsetti, Srinivas, Attada, Raju, Dasari, Hari, Sanchez-Garrido, Jose, Genevier, Lily, El Gharamti, Mohamad, Gittings, John A., Gokul, Elamurugu, Gopalakrishnan, Ganesh, Guo, Daquan, Hadri, Bilel, Hadwiger, Markus, Hammoud, Mohammed Abed, Hendershott, Myrl, Hittawe, Mohamad, Karumuri, Ashok, Knio, Omar, Köhl, Armin, Kortas, Samuel, Krokos, George, Kunchala, Ravi, Issa, Leila, Lakkis, Issam, Langodan, Sabique, Lermusiaux, Pierre, Luong, Thang, Ma, Jingyi, Le Maitre, Olivier, Mazloff, Matthew, El Mohtar, Samah, Papadopoulos, Vassilis P., Platt, Trevor, Pratt, Larry, Raboudi, Naila, Racault, Marie-Fanny, Raitsos, Dionysios E., Razak, Shanas, Sanikommu, Sivareddy, Sathyendranath, Shubha, Sofianos, Sarantis, Subramanian, Aneesh, Sun, Rui, Titi, Edriss, Toye, Habib, Triantafyllou, George, Tsiaras, Kostas, Vasou, Panagiotis, Viswanadhapalli, Yesubabu, Wang, Yixin, Yao, Fengchao, Zhan, Peng, Zodiatis, George. (2021). Towards an end-to-end analysis and prediction system for weather, climate, and marine applications in the Red Sea. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7ws8xnv. Accessed 30 June 2025.

Harvest Source