Gravity waves simulated by high-resolution Whole Atmosphere Community Climate Model

For the first time a mesoscale-resolving whole atmosphere general circulation model has been developed, using the National Center for Atmospheric Research Whole Atmosphere Community Climate Model with ∼0.25° horizontal resolution and 0.1 scale height vertical resolution above the middle stratosphere (higher resolution below). This is made possible by the high accuracy and high scalability of the spectral element dynamical core from the High-Order Method Modeling Environment. For the simulated January–February period, the latitude-height structure and the magnitudes of the temperature variance compare well with those deduced from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) observations. The simulation reveals the increasing dominance of gravity waves (GWs) at higher altitudes through both the height dependence of the kinetic energy spectra, which display a steeper slope (∼-3) in the stratosphere and an increasingly shallower slope above, and the increasing spatial extent of GWs (including a planetary-scale extent of a concentric GW excited by a tropical cyclone) at higher altitudes. GW impacts on the large-scale flow are evaluated in terms of zonal mean zonal wind and tides: with no GW drag parameterized in the simulations, forcing by resolved GWs does reverse the summer mesospheric wind, albeit at an altitude higher than climatology, and only slows down the winter mesospheric wind without closing it. The hemispheric structures and magnitudes of diurnal and semidiurnal migrating tides compare favorably with observations.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2014 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Liu, Hanli
McInerney, Joseph
Santos, Sean
Lauritzen, Peter
Taylor, M.
Pedatella, Nicholas
Publisher UCAR/NCAR - Library
Publication Date 2014-12-28T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:44:22.648087
Metadata Record Identifier edu.ucar.opensky::articles:14514
Metadata Language eng; USA
Suggested Citation Liu, Hanli, McInerney, Joseph, Santos, Sean, Lauritzen, Peter, Taylor, M., Pedatella, Nicholas. (2014). Gravity waves simulated by high-resolution Whole Atmosphere Community Climate Model. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7q52qnb. Accessed 19 July 2025.

Harvest Source