Evolution of ozone pollution in China: What track will it follow?

Increasing surface ozone (O3) concentrations has emerged as a key air pollution problem in many urban regions worldwide in the last decade. A longstanding major issue in tackling ozone pollution is the identification of the O3 formation regime and its sensitivity to precursor emissions. In this work, we propose a new transformed empirical kinetic modeling approach (EKMA) to diagnose the O3 formation regime using regulatory O3 and NO2 observation datasets, which are easily accessible. We demonstrate that mapping of monitored O3 and NO2 data on the modeled regional O3-NO2 relationship diagram can illustrate the ozone formation regime and historical evolution of O3 precursors of the region. By applying this new approach, we show that for most urban regions of China, the O3 formation is currently associated with a volatile organic compound (VOC)-limited regime, which is located within the zone of daytime-produced O3 (DPO3) to an 8h-NO2 concentration ratio below 8.3 ([DPO3]/[8h-NO2] <= 8.3). The ozone production and controlling effects of VOCs and NOx in different cities of China were compared according to their historical O3-NO2 evolution routes. The approach developed herein may have broad application potential for evaluating the efficiency of precursor controls and further mitigating O3 pollution, in for where studies are unavailable.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Guo, Jia
Zhang, Xiaoshan
Gao, Yi
Wang, Zhangwei
Zhang, Meigen
Xue, Wenbo
Herrmann, Hartmut
Brasseur, Guy Pierre
Wang, Tao
Wang, Zhe
Publisher UCAR/NCAR - Library
Publication Date 2023-01-10T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:41:25.710189
Metadata Record Identifier edu.ucar.opensky::articles:25992
Metadata Language eng; USA
Suggested Citation Guo, Jia, Zhang, Xiaoshan, Gao, Yi, Wang, Zhangwei, Zhang, Meigen, Xue, Wenbo, Herrmann, Hartmut, Brasseur, Guy Pierre, Wang, Tao, Wang, Zhe. (2023). Evolution of ozone pollution in China: What track will it follow?. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7hm5dbb. Accessed 24 June 2025.

Harvest Source