Influences of moist convection on a cold-season outbreak of clear-air turbulence (CAT)

The 9-10 March 2006 aviation turbulence outbreak over the central United States is examined using observations and numerical simulations. Though the turbulence occurs within a deep synoptic cyclone with widespread precipitation, comparison of reports from commercial aircraft with radar and satellite data reveals the majority of the turbulence to be in clear air. This clear-air turbulence (CAT) is located above a strong upper-level jet, where vertical shear ranged between 20 and 30 m s⁻¹ km⁻¹. Comparison of a moist simulation with a dry simulation reveals that simulated vertical shear and subgrid turbulence kinetic energy is significantly enhanced by the anticyclonic upper-level flow perturbation associated with the organized convection in regions of observed CAT. A higher-resolution simulation is used to examine turbulence mechanisms in two primary clusters of reported moderate and severe turbulence. In the northern cluster where vertical shear is strongest, the simulated turbulence arises from Kelvin-Helmholtz (KH) instability. The turbulence farther south occurs several kilometers above shallow, but vigorous, moist convection. There, the simulated turbulence is influenced by vertically propagating gravity waves initiated when the convection impinges on a lowered tropopause. In some locations these gravity waves amplify and break leading directly to turbulence, while in others they aid turbulence development by helping excite KH instability within the layers of strongest vertical shear above them. Although both clusters of turbulence occur either above or laterally displaced from cloud, a shared characteristic is their owed existence to moist convection within the wintertime cyclone, which distinguishes them from traditional CAT.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Trier, Stanley
Sharman, Robert
Lane, Todd
Publisher UCAR/NCAR - Library
Publication Date 2012-08-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:53:23.839668
Metadata Record Identifier edu.ucar.opensky::articles:12188
Metadata Language eng; USA
Suggested Citation Trier, Stanley, Sharman, Robert, Lane, Todd. (2012). Influences of moist convection on a cold-season outbreak of clear-air turbulence (CAT). UCAR/NCAR - Library. http://n2t.net/ark:/85065/d73x87c7. Accessed 21 July 2025.

Harvest Source