Dryline on 19 June 2002 during IHOP. Part I: Airborne doppler and LEANDRE II analyses of the thin line structure and convection initiation

The evolution and finescale structure of a dryline that initiated a line of thunderstorms is presented. Both the along-line variability and mean vertical structure were examined using data collected by an airborne Doppler radar and a water vapor differential absorption lidar (DIAL). The initiation of convection appeared to result from the diurnally induced easterly flow in the maritime air east of the dryline that typically develops late in the day. This flow increased the low-level convergence and allowed rising parcels of air to reach the level of free convection. The along-line variability was largely attributed to numerous misocyclones distorting the thin line of radar reflectivity by advecting dry (moist) air across the dryline south (north) of the misocyclone. The misocyclones also influenced the location of the updrafts, with most of the peak values positioned north of the circulations. As a result, these updrafts were fortuitously positioned in regions of high mixing ratio where the first convective cells initiated.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2006 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Murphey, Hanne
Wakimoto, Roger
Flamant, Cyrille
Kingsmill, David
Publisher UCAR/NCAR - Library
Publication Date 2006-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:09:03.650136
Metadata Record Identifier edu.ucar.opensky::articles:8890
Metadata Language eng; USA
Suggested Citation Murphey, Hanne, Wakimoto, Roger, Flamant, Cyrille, Kingsmill, David. (2006). Dryline on 19 June 2002 during IHOP. Part I: Airborne doppler and LEANDRE II analyses of the thin line structure and convection initiation. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7wd417d. Accessed 25 June 2025.

Harvest Source