On the intercontinental transferability of regional climate model response to severe forestation

The biogeophysical effects of severe forestation are quantified using a new ensemble of regional climate simulations over North America and Europe. Following the protocol outlined for the Land-Use and Climate Across Scales (LUCAS) intercomparison project, two sets of simulations are compared, FOREST and GRASS, which respectively represent worlds where all vegetation is replaced by trees and grasses. Three regional climate models were run over North America. One of them, the Canadian Regional Climate Model (CRCM5), was also run over Europe in an attempt to bridge results with the original LUCAS ensemble, which was confined to Europe. Overall, the CRCM5 response to forestation reveals strong inter-continental similarities, including a pronounced wintertime and springtime warming concentrated over snow-masking evergreen forests. Crucially, these northern evergreen needleleaf forests populate lower, hence sunnier, latitudes in North America than in Europe. Snow masking reduces albedo similarly over both continents, but stronger insolation amplifies the net shortwave radiation and hence warming simulated over North America. In the summertime, CRCM5 produces a mixed response to forestation, with warming over northern needleleaf forests and cooling over southern broadleaf forests. The partitioning of the turbulent heat fluxes plays a major role in determining this response, but it is not robust across models over North America. Implications for the inter-continental transferability of the original LUCAS results are discussed.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Asselin, Olivier
Leduc, Martin
Paquin, Dominique
Di Luca, Alejandro
Winger, Katja
Bukovsky, Melissa
Music, Biljana
Giguère, Michel
Publisher UCAR/NCAR - Library
Publication Date 2022-09-23T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:42:35.953617
Metadata Record Identifier edu.ucar.opensky::articles:25827
Metadata Language eng; USA
Suggested Citation Asselin, Olivier, Leduc, Martin, Paquin, Dominique, Di Luca, Alejandro, Winger, Katja, Bukovsky, Melissa, Music, Biljana, Giguère, Michel. (2022). On the intercontinental transferability of regional climate model response to severe forestation. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7ks6wbv. Accessed 25 June 2025.

Harvest Source