Contribution from biogenic organic compounds to particle growth during the 2010 BEACHON-ROCS campaign in a Colorado temperate needleleaf forest

New particle formation (NPF) is an important atmospheric phenomenon. During an NPF event, particles first form by nucleation and then grow further in size. The growth step is crucial because it controls the number of particles that can become cloud condensation nuclei. Among various physical and chemical processes contributing to particle growth, condensation by organic vapors has been suggested as important. In order to better understand the influence of biogenic emissions on particle growth, we carried out modeling studies of NPF events during the BEACHON-ROCS (Bio-hydro-atmosphere interactions of Energy, Aerosol, Carbon, H₂O, Organics & Nitrogen -- Rocky Mountain Organic Carbon Study) campaign at Manitou Experimental Forest Observatory in Colorado, USA. The site is representative of the semi-arid western USA. With the latest Criegee intermediate reaction rates implemented in the chemistry scheme, the model underestimates sulfuric acid concentration by 50 %, suggesting either missing sources of atmospheric sulfuric acid or an overestimated sink term. The results emphasize the contribution from biogenic volatile organic compound emissions to particle growth by demonstrating the effects of the oxidation products of monoterpenes and 2-Methyl-3-buten-2-ol (MBO). Monoterpene oxidation products are shown to influence the nighttime particle loadings significantly, while their concentrations are insufficient to grow the particles during the day. The growth of ultrafine particles in the daytime appears to be closely related to the OH oxidation products of MBO.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Author(s) 2015. This work is distributed under the Creative Commons Attribution 3.0 License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zhou, L.
Gierens, R.
Sogachev, A.
Mogensen, D.
Ortega, John
Smith, James
Harley, Peter
Prenni, A.
Levin, E.
Turnipseed, Andrew
Rusanen, A.
Smolander, S.
Guenther, A.
Kulmala, M.
Karl, T.
Boy, M.
Publisher UCAR/NCAR - Library
Publication Date 2015-08-06T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:58:21.092979
Metadata Record Identifier edu.ucar.opensky::articles:16910
Metadata Language eng; USA
Suggested Citation Zhou, L., Gierens, R., Sogachev, A., Mogensen, D., Ortega, John, Smith, James, Harley, Peter, Prenni, A., Levin, E., Turnipseed, Andrew, Rusanen, A., Smolander, S., Guenther, A., Kulmala, M., Karl, T., Boy, M.. (2015). Contribution from biogenic organic compounds to particle growth during the 2010 BEACHON-ROCS campaign in a Colorado temperate needleleaf forest. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7n29z4h. Accessed 26 June 2025.

Harvest Source