Net radiative forcing and air quality responses to regional CO emission reductions

Carbon monoxide (CO) emissions influence global and regional air quality and global climate change by affecting atmospheric oxidants and secondary species. We simulate the influence of halving anthropogenic CO emissions globally and individually from 10 regions on surface and tropospheric ozone, methane, and aerosol concentrations using a global chemical transport model (MOZART-4 for the year 2005). Net radiative forcing (RF) is then estimated using the GFDL (Geophysical Fluid Dynamics Laboratory) standalone radiative transfer model. We estimate that halving global CO emissions decreases global annual average concentrations of surface ozone by 0.45 ppbv, tropospheric methane by 73 ppbv, and global annual net RF by 36.1 mW m⁻², nearly equal to the sum of changes from the 10 regional reductions. Global annual net RF per unit change in emissions and the 100 yr global warming potential (GWP₁₀₀) are estimated as -0.124 mW m⁻² (Tg CO)⁻¹ and 1.34, respectively, for the global CO reduction, and ranging from −0.115 to −0.131 mW m⁻² (Tg CO)⁻¹ and 1.26 to 1.44 across 10 regions, with the greatest sensitivities for regions in the tropics. The net RF distributions show widespread cooling corresponding to the O₃ and CH₄ decreases, and localized positive and negative net RFs due to changes in aerosols. The strongest annual net RF impacts occur within the tropics (28° S-28° N) followed by the northern midlatitudes (28° N-60° N), independent of reduction region, while the greatest changes in surface CO and ozone concentrations occur within the reduction region. Some regional reductions strongly influence the air quality in other regions, such as East Asia, which has an impact on US surface ozone that is 93% of that from North America. Changes in the transport of CO and downwind ozone production clearly exceed the direct export of ozone from each reduction region. The small variation in CO GWPs among world regions suggests that future international climate agreements could adopt a globally uniform metric for CO with little error, or could use different GWPs for each continent. Doing so may increase the incentive to reduce CO through coordinated policies addressing climate and air quality.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Fry, M.
Schwarzkopf, M.
Adelman, Z.
Naik, Vaishali
Collins, W.
West, J.
Publisher UCAR/NCAR - Library
Publication Date 2013-05-29T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-15T21:27:35.656829
Metadata Record Identifier edu.ucar.opensky::articles:12787
Metadata Language eng; USA
Suggested Citation Fry, M., Schwarzkopf, M., Adelman, Z., Naik, Vaishali, Collins, W., West, J.. (2013). Net radiative forcing and air quality responses to regional CO emission reductions. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7j67hsb. Accessed 14 August 2025.

Harvest Source