Modeling of pesticide emissions from agricultural ecosystems

Pesticides are applied to crops and soils to improve agricultural yields, but the use of pesticides has become highly regulated because of concerns about their adverse effects on human health and environment. Estimating pesticide emission rates from soils and crops is a key component for risk assessment for pesticide registration, identification of pesticide sources to the contamination of sensitive ecosystems, and appreciation of transport and fate of pesticides in the environment. Pesticide emission rates involve processes occurring in the soil, in the atmosphere, and on vegetation surfaces and are highly dependent on soil texture, agricultural practices, and meteorology, which vary significantly with location and/or time. To take all these factors into account for simulating pesticide emissions from large agricultural ecosystems, this study coupled a comprehensive meteorological model with a dynamic pesticide emission model. The combined model calculates hourly emission rates from both emission sources: current applications and soil residues resulting from historical use. The coupled modeling system is used to compute a gridded (36 × 36 km) hourly toxaphene emission inventory for North America for the year 2000 using a published U.S. toxaphene residue inventory and a Mexican toxaphene residue inventory developed using its historical application rates and a cropland inventory. To my knowledge, this is the first such hourly toxaphene emission inventory for North America. Results show that modeled emission rates have strong diurnal and seasonal variations at a given location and over the entire domain. The simulated total toxaphene emission from contaminated agricultural soils in North America in 2000 was about 255 t, which compares reasonably well to a published annual estimate. Most emissions occur in spring and summer, with domain-wide emission rates in April, May and, June of 36, 51, and 35 t/month, respectively. The spatial distribution of emissions depends on the distribution of toxaphene soil residues, and high emission rates coincide with heavily contaminated areas.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2012 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Li, Rong
Publisher UCAR/NCAR - Library
Publication Date 2012-04-03T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-15T21:35:55.346003
Metadata Record Identifier edu.ucar.opensky::articles:11884
Metadata Language eng; USA
Suggested Citation Li, Rong. (2012). Modeling of pesticide emissions from agricultural ecosystems. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7nz8892. Accessed 21 August 2025.

Harvest Source