Taking the pulse of the planet

Humans have released carbon dioxide and other greenhouse gases in sufficient quantity to change the composition of the atmosphere (Figure 1). The result is an accumulation of heat in Earth’s system, commonly referred to as global warming. Earth’s climate has responded to this influx of heat through higher temperatures in the atmosphere, land, and ocean. This warming, in turn, has melted ice, raised sea levels, and increased the frequency of extreme weather events: heat waves and heavy rains, for example. The results of these weather events include wildfires and flooding, among other things [Intergovernmental Panel on Climate Change, 2013]. Decision-makers, scientists, and the general public are faced with critical questions: How fast is Earth’s system accumulating heat, and how much will it warm in the future as human activities continue to emit greenhouse gases? Here we explore better ways of measuring global warming to answer these questions. Natural temperature variability is much more muted in the ocean than in the atmosphere, owing to the ocean’s greater ability to absorb heat (its heat capacity). As a result, ocean heating and sea level rise, which are measured independently, show stronger evidence that the planet is warming than does global average surface temperature, which relies on air temperature measurements. In other words, these ocean measurements could provide vital signs for the health of the planet. Thus, we suggest that scientists and modelers who seek global warming signals should track how much heat the ocean is storing at any given time, termed global ocean heat content (OHC), as well as sea level rise (SLR). Similar to SLR, OHC has a very high signal-to-noise ratio; that is, it clearly shows the effects of climate change distinct from natural variability.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Cheng, Lijing
Trenberth, Kevin
Fasullo, John
Abraham, John
Boyer, Tim
von Schuckmann, Karina
Zhu, Jiang
Publisher UCAR/NCAR - Library
Publication Date 2018-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:17:05.327648
Metadata Record Identifier edu.ucar.opensky::articles:21256
Metadata Language eng; USA
Suggested Citation Cheng, Lijing, Trenberth, Kevin, Fasullo, John, Abraham, John, Boyer, Tim, von Schuckmann, Karina, Zhu, Jiang. (2018). Taking the pulse of the planet. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7tb19gd. Accessed 20 July 2025.

Harvest Source