Satellite and in situ observations for advancing global Earth surface modelling: A review

In this paper, we review the use of satellite-based remote sensing in combination with in situ data to inform Earth surface modelling. This involves verification and optimization methods that can handle both random and systematic errors and result in effective model improvement for both surface monitoring and prediction applications. The reasons for diverse remote sensing data and products include (i) their complementary areal and temporal coverage, (ii) their diverse and covariant information content, and (iii) their ability to complement in situ observations, which are often sparse and only locally representative. To improve our understanding of the complex behavior of the Earth system at the surface and sub-surface, we need large volumes of data from high-resolution modelling and remote sensing, since the Earth surface exhibits a high degree of heterogeneity and discontinuities in space and time. The spatial and temporal variability of the biosphere, hydrosphere, cryosphere and anthroposphere calls for an increased use of Earth observation (EO) data attaining volumes previously considered prohibitive. We review data availability and discuss recent examples where satellite remote sensing is used to infer observable surface quantities directly or indirectly, with particular emphasis on key parameters necessary for weather and climate prediction. Coordinated high-resolution remote-sensing and modelling/assimilation capabilities for the Earth surface are required to support an international application-focused effort.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2018 Author(s). This work is licensed under a Creative Commons Attribution 4.0 International license.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Balsamo, G.
Agustì-Parareda, A.
Albergel, C.
Arduini, G.
Beljaars, A.
Bidlot, J.
Bousserez, N.
Boussetta, S.
Brown, A.
Buizza, R.
Buontempo, C.
Chevallier, F.
Choulga, M.
Cloke, H.
Cronin, M.
Dahoui, M.
De Rosnay, P.
Dirmeyer, P.
Drusch, M.
Dutra, E.
Ek, Michael B.
Gentine, P.
Hewitt, H.
Keeley, S.
Kerr, Y.
Kumar, S.
Lupu, C.
Mahfouf, J.
McNorton, J.
Mecklenburg, S.
Mogensen, K.
Muñoz-Sabater, J.
Orth, R.
Rabier, F.
Reichle, R.
Ruston, B.
Pappenberger, F.
Sandu, I.
Seneviratne, S.
Tietsche, S.
Trigo, I.
Uijlenhoet, R.
WEDI, N.
Woolway, R.
Zeng, X.
Publisher UCAR/NCAR - Library
Publication Date 2018-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:32:54.599430
Metadata Record Identifier edu.ucar.opensky::articles:22312
Metadata Language eng; USA
Suggested Citation Balsamo, G., Agustì-Parareda, A., Albergel, C., Arduini, G., Beljaars, A., Bidlot, J., Bousserez, N., Boussetta, S., Brown, A., Buizza, R., Buontempo, C., Chevallier, F., Choulga, M., Cloke, H., Cronin, M., Dahoui, M., De Rosnay, P., Dirmeyer, P., Drusch, M., Dutra, E., Ek, Michael B., Gentine, P., Hewitt, H., Keeley, S., Kerr, Y., Kumar, S., Lupu, C., Mahfouf, J., McNorton, J., Mecklenburg, S., Mogensen, K., Muñoz-Sabater, J., Orth, R., Rabier, F., Reichle, R., Ruston, B., Pappenberger, F., Sandu, I., Seneviratne, S., Tietsche, S., Trigo, I., Uijlenhoet, R., WEDI, N., Woolway, R., Zeng, X.. (2018). Satellite and in situ observations for advancing global Earth surface modelling: A review. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7z60t7z. Accessed 30 July 2025.

Harvest Source