An algorithm for classification and outlier detection of time series data

An algorithm to perform outlier detection on time-series data is developed, the intelligent outlier detection algorithm (IODA). This algorithm treats a time series as an image and segments the image into clusters of interest, such as "nominal data" and "failure mode" clusters. The algorithm uses density clustering techniques to identify sequences of coincident clusters in both the time domain and delay space, where the delay-space representation of the time series consists of ordered pairs of consecutive data points taken from the time series. “Optimal” clusters that contain either mostly nominal or mostly failure-mode data are identified in both the time domain and delay space. A best cluster is selected in delay space and used to construct a "feature" in the time domain from a subset of the optimal time-domain clusters. Segments of the time series and each datum in the time series are classified using decision trees. Depending on the classification of the time series, a final quality score (or quality index) for each data point is calculated by combining a number of individual indicators. The performance of the algorithm is demonstrated via analyses of real and simulated time-series data.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Weekley, R.
Goodrich, Robert
Cornman, Larry
Publisher UCAR/NCAR - Library
Publication Date 2010-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:26:41.210875
Metadata Record Identifier edu.ucar.opensky::articles:17279
Metadata Language eng; USA
Suggested Citation Weekley, R., Goodrich, Robert, Cornman, Larry. (2010). An algorithm for classification and outlier detection of time series data. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7125tx2. Accessed 22 June 2025.

Harvest Source