High urban NOx triggers a substantial chemical downward flux of ozone

Nitrogen oxides (NOx) play a central role in catalyzing tropospheric ozone formation. Nitrogen dioxide (NO2) has recently reemerged as a key target for air pollution control measures, and observational evidence points toward a limited understanding of ozone in high-NOx environments. A complete understanding of the mechanisms controlling the rapid atmospheric cycling between ozone (O3)-nitric oxide (NO)-NO2 in high-NOx regimes at the surface is therefore paramount but remains challenging because of competing dynamical and chemical effects. Here, we present long-term eddy covariance measurements of O3 , NO, and NO2 , over an urban area, that allow disentangling important physical and chemical processes. When generalized, our findings suggest that the depositional O3 flux near the surface in urban environments is negligible compared to the flux caused by chemical conversion of O3. This leads to an underestimation of the Leighton ratio and is a key process for modulating urban NO2 mixing ratios. As a consequence, primary NO2 emissions have been significantly overestimated.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : High Urban NOx Triggers a Substantial Chemical Downward Flux of Ozone

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Karl, T.
Lamprecht, C.
Graus, M.
Cede, A.
Tiefengraber, M.
Vila-Guerau de Arellano, J.
Gurarie, D.
Lenschow, Donald H.
Publisher UCAR/NCAR - Library
Publication Date 2023-01-20T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T15:55:13.209633
Metadata Record Identifier edu.ucar.opensky::articles:26275
Metadata Language eng; USA
Suggested Citation Karl, T., Lamprecht, C., Graus, M., Cede, A., Tiefengraber, M., Vila-Guerau de Arellano, J., Gurarie, D., Lenschow, Donald H.. (2023). High urban NOx triggers a substantial chemical downward flux of ozone. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d79027rf. Accessed 03 August 2025.

Harvest Source