Observations pertaining to precipitation within the northeast Pacific stratocumulus-to-cumulus transition

Three genuine stratocumulus-to-cumulus transitions sampled during the Cloud System Evolution over the Trades (CSET) campaign are documented. The focus is on Lagrangian evolution of in situ precipitation, thought to exceed radar/lidar retrieved values because of Mie scattering. Two of the three initial stratocumulus cases are pristine [cloud droplet number concentrations (N-d) of similar to 22 cm(-3)] but occupied boundary layers of different depths, while the third is polluted (N-d similar to 225 cm(-3)). Hourly satellite-derived cloud fraction along Lagrangian trajectories indicate that more quickly deepening boundary layers tend to transition faster, into more intense but more occasional precipitation. These transitions begin either in the morning or late afternoon, suggesting that preceding night processes can precondition or delay the inevitable transition. The precipitation shifts toward larger drop sizes throughout the transition as the boundary layers deepen, with aerosol concentrations only diminishing in two of the three cases. Ultraclean (N-d < 1 cm(-3)) cumulus clouds evolved from pristine stratocumulus cloud with unusually high precipitation rates occupying a shallow, well-mixed boundary layer. Results from a simple one-dimensional evaporation model and from radar/lidar retrievals suggest subcloud evaporation likely increases throughout the transition. This, coupled with larger drop sizes capable of lowering the latent cooling profile, facilitates the transition to more surface-driven convection. The coassociation between boundary layer depth and precipitation does not provide definitive conclusions on the isolated effect of precipitation on the pace of the transition. Differences between the initial conditions of the three examples provide opportunities for further modeling studies.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : Hydrometeor Mask and Cloud Boundaries Data. Version 1.0

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2020 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Sarkar, Mampi
Zuidema, Paquita
Albrecht, Bruce
Ghate, Virendra
Jensen, Jorgen
Mohrmann, Johannes
Wood, Robert
Publisher UCAR/NCAR - Library
Publication Date 2020-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:35:46.806771
Metadata Record Identifier edu.ucar.opensky::articles:23287
Metadata Language eng; USA
Suggested Citation Sarkar, Mampi, Zuidema, Paquita, Albrecht, Bruce, Ghate, Virendra, Jensen, Jorgen, Mohrmann, Johannes, Wood, Robert. (2020). Observations pertaining to precipitation within the northeast Pacific stratocumulus-to-cumulus transition. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d70k2csm. Accessed 27 June 2025.

Harvest Source