Toward constraining regional-scale fluxes of CO₂ with atmospheric observations over a continent: 1. Observed spatial variability from airborne platforms

We analyze the spatial variability of CO2 measurements from aircraft platforms, including extensive observations acquired over North America during the CO2 Budget and Rectification Airborne (COBRA) study in 2000. The COBRA data set is unique in its dense spatial coverage and extensive profiling in the lower atmosphere. Strong signatures of CO2 fluxes at the land surface were observed in the active and relic mixed layers of the atmosphere (up to ~20 ppm gradients). Free tropospheric CO2 exhibited significantly less variability except in areas affected by convective transport. Statistical analyses of the COBRA data indicate that CO2 mixed-layer averages can be determined from vertical profiles with an accuracy of approximately ±0.2 ppm, limited by atmospheric variance. Analysis of the associated representation error suggests that models require horizontal resolution smaller than ∼30 km to fully resolve spatial variations of atmospheric CO2 in the boundary layer over the continent. To provide a global context for these data, we analyzed the GLOBALVIEW marine boundary layer (MBL) reference CO2. Comparison of the MBL reference with extensive aircraft data extending over 20 years, covering the whole troposphere over the northern Pacific, shows significant seasonal biases of up to 2 ppm in the free troposphere, indicating that the MBL reference is a suitable boundary condition only for some applications. The spatial variability of CO2 revealed by the COBRA-2000 calls for a suitable analysis framework to derive regional and continental fluxes, presented in a companion paper. The problem requires boundary conditions constrained by both surface and upper tropospheric observations and constraints on terrestrial fluxes that exploit the information content of the highly variable CO2 distribution over land.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2003 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Gerbig, C.
Lin, J.
Wofsy, S.
Daube, B.
Andrews, A.
Stephens, Britton
Bakwin, P.
Grainger, C.
Publisher UCAR/NCAR - Library
Publication Date 2003-12-27T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:44:50.913281
Metadata Record Identifier edu.ucar.opensky::articles:10269
Metadata Language eng; USA
Suggested Citation Gerbig, C., Lin, J., Wofsy, S., Daube, B., Andrews, A., Stephens, Britton, Bakwin, P., Grainger, C.. (2003). Toward constraining regional-scale fluxes of CO₂ with atmospheric observations over a continent: 1. Observed spatial variability from airborne platforms. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7z32069. Accessed 20 June 2025.

Harvest Source