2017 Atlantic hurricane forecasts from a high-resolution version of the GFDL fvGFS model: Evaluation of track, intensity, and structure

The 2017 Atlantic hurricane season had several high-impact tropical cyclones (TCs), including multiple cases of rapid intensification (RI). A high-resolution nested version of the GFDL finite-volume dynamical core (FV3) with GFS physics (fvGFS) model (HifvGFS) was used to conduct hindcasts of all Atlantic TCs between 7 August and 15 October. HifvGFS showed promising track forecast performance, with similar error patterns and skill compared to the operational GFS and HWRF models. Some of the larger track forecast errors were associated with the erratic tracks of TCs Jose and Lee. A case study of Hurricane Maria found that although the track forecasts were generally skillful, a right-of-track bias was noted in some cases associated with initialization and prediction of ridging north of the storm. The intensity forecasts showed large improvement over the GFS and global fvGFS models but were somewhat less skillful than HWRF. The largest negative intensity forecast errors were associated with the RI of TCs Irma, Lee, and Maria, while the largest positive errors were found with recurving cases that were generally weakening. The structure forecasts were also compared with observations, and HifvGFS was found to generally have wind radii larger than the observations. Detailed examination of the forecasts of Hurricanes Harvey and Maria showed that HifvGFS was able to predict the structural evolution leading to RI in some cases but was not as skillful with other RI cases. One case study of Maria suggested that the inclusion of ocean coupling could significantly reduce the positive bias seen during and after recurvature.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2018 American Meteorological Society.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hazelton, Andrew T.
Bender, Morris
Morin, Matthew
Harris, Lucas
Lin, Shian-Jiann
Publisher UCAR/NCAR - Library
Publication Date 2018-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:19:50.341725
Metadata Record Identifier edu.ucar.opensky::articles:22160
Metadata Language eng; USA
Suggested Citation Hazelton, Andrew T., Bender, Morris, Morin, Matthew, Harris, Lucas, Lin, Shian-Jiann. (2018). 2017 Atlantic hurricane forecasts from a high-resolution version of the GFDL fvGFS model: Evaluation of track, intensity, and structure. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d76m39sc. Accessed 25 January 2025.

Harvest Source