A comparison of tropical cyclone genesis forecast verification from three Global Forecast System (GFS) operational configurations

Operational forecasting of tropical cyclone (TC) genesis has improved in recent years but still can be a challenge. Output from global numerical models continues to serve as a primary source of forecast guidance. Bulk verification statistics (e.g., critical success index) of TC genesis forecasts indicate that, overall, global models are increasingly able to predict TC genesis. However, as global model configurations are updated, TC genesis verification statistics will change. This study compares operational and retrospective forecasts from three configurations of NCEP's Global Forecast System (GFS) to quantify the impact of model upgrades on TC genesis forecasts. First, bulk verification statistics from a homogeneous sample of model initialization cycles during the period 2013-14 are compared. Then, composites of select output fields are analyzed in an attempt to identify any key differences between hit and false alarm events. Bulk statistics indicate that TC genesis forecast performance decreased with the implementation of the 2015 version of the GFS, but then modestly recovered with the 2016 version of the model. In addition, the composite analysis suggests that false alarm forecasts in the 2015 version of the GFS may have been the result of inaccurately forecasting the location and/or strength of upper-level troughs poleward of the TC. There is also evidence of convective feedbacks occurring, such as ridging above the low-level circulation and upper-level convective outflow that were too strong, in this same set of false alarm forecasts. Overall, analyzing retrospective forecasts can assist forecasters in determining the strengths and weaknesses associated with a new configuration of a global model with respect to TC genesis.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2020 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Halperin, Daniel J.
Penny, Andrew B.
Hart, Robert E.
Publisher UCAR/NCAR - Library
Publication Date 2020-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:10:43.373798
Metadata Record Identifier edu.ucar.opensky::articles:23847
Metadata Language eng; USA
Suggested Citation Halperin, Daniel J., Penny, Andrew B., Hart, Robert E.. (2020). A comparison of tropical cyclone genesis forecast verification from three Global Forecast System (GFS) operational configurations. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7b27zks. Accessed 12 May 2025.

Harvest Source