A comparison of very short lived halocarbon (VSLS) and DMS aircraft measurements in the tropical west Pacific from CAST, ATTREX and CONTRAST

We present a comparison of aircraft measurements of halogenated very short lived substances (VSLSs) and dimethyl sulphide (DMS, C2H6S) from a co-ordinated campaign in January-February 2014 in the tropical west Pacific. Measurements were made on the NASA Global Hawk, NCAR Gulfstream-V High-performance Instrumented Airborne Platform for Environmental Research (GV HIAPER) and UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 (see Sect. 2.2) using four separate gas chromatography-mass spectrometry (GC-MS) instruments: one operated by the University of Miami (UoM), one from the National Center for Atmospheric Research (NCAR) and two from the University of York (UoY). DMS was measured on the BAe-146 and GV. The instruments were inter-calibrated for halocarbons during the campaign period using two gas standards on separate scales: a National Oceanic and Atmospheric Administration (NOAA) SX-3581 standard representative of clean low-hydrocarbon air, and an Essex canister prepared by UoM, representative of coastal air, which was higher in VSLS and hydrocarbon content. UoY and NCAR use the NOAA scale/standard for VSLS calibration, and UoM uses a scale based on dilutions of primary standards calibrated by GC with FID (flame ionisation detector) and AED (atomic emission detector). Analysis of the NOAA SX-3581 standard resulted in good agreement for CH2Cl2, CHCl3, CHBr3, CH2Br2, CH2BrCl, CHBrCl2, CHBr2Cl, CH3I, CH2ICl and CH2I2 (average relative standard deviation (RSD) < 10 %). Agreement was in general slightly poorer for the UoM Essex canister with an RSD of < 13 %. Analyses of CHBrCl2 and CHBr3 in this standard however showed significant variability, most likely due to co-eluting contaminant peaks, and a high concentration of CHBr3, respectively. These issues highlight the importance of calibration at atmospherically relevant concentrations (similar to 0.5-5 ppt for VSLSs; see Fig. 5 for individual ranges). The UoY in situ GC-MS measurements on board the BAe-146 compare favourably with ambient data from NCAR and UoM; however the UoY whole-air samples showed a negative bias for some lower-volatility compounds. This systematic bias could be attributed to sample line losses. Considering their large spatial variability, DMS and CH3I displayed good cross-platform agreement without any sampling bias, likely due to their higher volatility. After a correction was performed based upon the UoY in situ vs. whole-air data, all four instrument datasets show good agreement across a range of VSLSs, with combined mean absolute percentage errors (MAPEs) of the four platforms throughout the vertical profiles ranging between 2.2 (CH2Br2) and 15 (CH3I)% across a large geographic area of the tropical west Pacific. This study shows that the international VSLS calibration scales and instrumental techniques discussed here are in generally good agreement (within similar to 10% across a range of VSLSs), but that losses in aircraft sampling lines can add a major source of uncertainty. Overall, the measurement uncertainty of bromo-carbons during these campaigns is much less than the uncertainty in the quantity of VSLS bromine estimated to reach the stratosphere of between 2 and 8 pptv.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Author(s) 2016. This work is distributed under the Creative Commons Attribution 3.0 License


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Andrews, Stephen J.
Carpenter, Lucy J.
Apel, Eric C.
Atlas, Elliot
Donets, Valeria
Hopkins, James R.
Hornbrook, Rebecca S.
Lewis, Alastair C.
Lidster, Richard T.
Lueb, Richard
Minaeian, Jamie
Navarro, Maria
Punjabi, Shalini
Riemer, Daniel
Schauffler, Sue
Publisher UCAR/NCAR - Library
Publication Date 2016-10-26T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:12:00.411953
Metadata Record Identifier edu.ucar.opensky::articles:19277
Metadata Language eng; USA
Suggested Citation Andrews, Stephen J., Carpenter, Lucy J., Apel, Eric C., Atlas, Elliot, Donets, Valeria, Hopkins, James R., Hornbrook, Rebecca S., Lewis, Alastair C., Lidster, Richard T., Lueb, Richard, Minaeian, Jamie, Navarro, Maria, Punjabi, Shalini, Riemer, Daniel, Schauffler, Sue. (2016). A comparison of very short lived halocarbon (VSLS) and DMS aircraft measurements in the tropical west Pacific from CAST, ATTREX and CONTRAST. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7c53nkw. Accessed 12 May 2025.

Harvest Source