A comprehensive numerical study of aerosol-cloud-precipitation interactions in marine stratocumulus

Three-dimensional large-eddy simulations (LES) with detailed bin-resolved microphysics are performed to explore the diurnal variation of marine stratocumulus (MSc) clouds under clean and polluted conditions. The sensitivity of the aerosol-cloud-precipitation interactions to variation of sea surface temperature, free tropospheric humidity, large-scale divergence rate, and wind speed is assessed. The comprehensive set of simulations corroborates previous studies that (1) with moderate/heavy drizzle, an increase in aerosol leads to an increase in cloud thickness; and (2) with non/light drizzle, an increase in aerosol results in a thinner cloud, due to the pronounced effect on entrainment. It is shown that for higher SST, stronger large-scale divergence, drier free troposphere, or lower wind speed, the cloud thins and precipitation decreases. The sign and magnitude of the Twomey effect, droplet dispersion effect, cloud thickness effect, and overall cloud optical depth susceptibility to aerosol perturbations are evaluated by LES experiments and compared with analytical formulations. The Twomey effect emerges as dominant in total cloud susceptibility to aerosol perturbations. The dispersion effect, that of aerosol perturbations on the cloud droplet size spectrum, is positive (i.e., increase in aerosol leads to spectral narrowing) and accounts for 3 % to 10 % of the total cloud susceptibility at nighttime, with the largest influence in heavier drizzling clouds. The cloud thickness effect is negative (i.e., increase in aerosol leads to thinner cloud) for non/light drizzling cloud and positive for moderate/heavy drizzling clouds; the cloud thickness effect contributes 5 % to 22 % of the nighttime cloud susceptibility. The range of magnitude for each effect is more variable in the daytime owing to cloud thinning and decoupling. Overall, the cloud susceptibility is ~0.28 to 0.53 at night; an increase in aerosol concentration enhances cloud optical depth, especially with heavier precipitation and in a more pristine environment. The good agreement between LES experiments and analytical formulations suggests that the latter may be useful in evaluations of cloud susceptibility. The ratio of the magnitude of the cloud thickness effect to that of the Twomey effect depends on cloud base height and cloud thickness in unperturbed (clean) clouds.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Authors 2011. This work is distributed under the Creative Commons Attribution 3.0 License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Chen, Yi-Chun
Xue, Lulin
Lebo, Z.
Wang, Hongli
Rasmussen, Roy
Seinfield, J.
Publisher UCAR/NCAR - Library
Publication Date 2011-09-21T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:09:23.107984
Metadata Record Identifier edu.ucar.opensky::articles:17544
Metadata Language eng; USA
Suggested Citation Chen, Yi-Chun, Xue, Lulin, Lebo, Z., Wang, Hongli, Rasmussen, Roy, Seinfield, J.. (2011). A comprehensive numerical study of aerosol-cloud-precipitation interactions in marine stratocumulus. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7jq129k. Accessed 15 February 2025.

Harvest Source