A containerized mesoscale model and analysis toolkit to accelerate classroom learning, collaborative research, and uncertainty quantification

Numerical weather prediction (NWP) experiments can be complex and time consuming; results depend on computational environments and numerous input parameters. Delays in learning and obtaining research results are inevitable. Students face disproportionate effort in the classroom or beginning graduate-level NWP research. Published NWP research is generally not reproducible, introducing uncertainty and slowing efforts that build on past results. This work exploits the rapid emergence of software container technology to produce a transformative research and education environment. The Weather Research and Forecasting (WRF) Model anchors a set of linked Linux-based containers, which include software to initialize and run the model, to analyze results, and to serve output to collaborators. The containers are demonstrated with a WRF simulation of Hurricane Sandy. The demonstration illustrates the following: 1) how the often-difficult exercise in compiling the WRF and its many dependencies is eliminated, 2) how sharing containers provides identical environments for conducting research, 3) that numerically reproducible results are easily obtainable, and 4) how uncertainty in the results can be isolated from uncertainty arising from computing system differences. Numerical experiments designed to simultaneously measure numerical reproducibility and sensitivity to compiler optimization provide guidance for interpreting NWP research. Reproducibility is independent from the operating system and hardware. Results here show numerically identical output on all computing platforms tested. Performance reproducibility is also demonstrated. The result is an infrastructure capable of accelerating classroom learning, graduate research, and collaborative science.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hacker, Joshua P.
Exby, John
Gill, David
Jimenez, Ivo
Maltzahn, Carlos
See, Timothy
Mullendore, Gretchen
Fossell, Kathryn
Publisher UCAR/NCAR - Library
Publication Date 2017-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:25:29.082325
Metadata Record Identifier edu.ucar.opensky::articles:20853
Metadata Language eng; USA
Suggested Citation Hacker, Joshua P., Exby, John, Gill, David, Jimenez, Ivo, Maltzahn, Carlos, See, Timothy, Mullendore, Gretchen, Fossell, Kathryn. (2017). A containerized mesoscale model and analysis toolkit to accelerate classroom learning, collaborative research, and uncertainty quantification. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d75141ng. Accessed 12 December 2024.

Harvest Source