A decadal satellite analysis of the origins and impacts of smoke in Colorado

We analyze the record of aerosol optical depth (AOD) measured by the MODerate resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite in combination with surface PM2.5 to investigate the impact of fires on aerosol loading and air quality over Colorado from 2000 to 2012, and to evaluate the contribution of local versus transported smoke. Fire smoke contributed significantly to the AOD levels observed over Colorado. During the worst fire seasons of 2002 and 2012, average MODIS AOD over the Colorado Front Range corridor were 20-50% larger than the other 11 yr studied. Surface PM2.5 was also unusually elevated during fire events and concentrations were in many occasions above the daily National Ambient Air Quality Standard (35 g m-3) and even reached locally unhealthy levels (> 100 g m-3) over populated areas during the 2012 High Park fire and the 2002 Hayman fire. Over the 13 yr examined, long-range transport of smoke from northwestern US and even California (> 1500 km distance) occurred often and affected AOD and surface PM2.5. During most of the transport events, MODIS AOD and surface PM2.5 were reasonable correlated (r2 = 0.2-0.9), indicating that smoke subsided into the Colorado boundary layer and reached surface levels. However, that is not always the case since at least one event of AOD enhancement was disconnected from the surface (r2<0.01 and low PM2.5 levels). Observed plume heights from the Multi-angle Imaging SpectroRadiometer (MISR) satellite instrument and vertical aerosol profiles measured by the space-based Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) showed a complex vertical distribution of smoke emitted by the High Park fire in 2012. Smoke was detected from a range of 1.5 to 7.5 km altitude at the fire origin and from ground levels to 12.3 km altitude far away from the source. The variability of smoke altitude as well as the local meteorology were key in determining the aerosol loading and air quality over the Colorado Front Range region. Our results underline the importance of accurate characterization of the vertical distribution of smoke for estimating the air quality degradation associated with fire activity and its link to human health.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Val Martin, M.
Heald, C.
Ford, B.
Prenni, A.
Wiedinmyer, Christine
Publisher UCAR/NCAR - Library
Publication Date 2013-08-03T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:54:05.766773
Metadata Record Identifier edu.ucar.opensky::articles:12736
Metadata Language eng; USA
Suggested Citation Val Martin, M., Heald, C., Ford, B., Prenni, A., Wiedinmyer, Christine. (2013). A decadal satellite analysis of the origins and impacts of smoke in Colorado. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d74b326g. Accessed 06 February 2025.

Harvest Source