A fast, parameterized model of upper atmospheric ionization rates, chemistry, and conductivity

Rapid specification of ionization rates and ion densities in the upper atmosphere is essential when many evaluations of the atmospheric state must be performed, as in global studies or analyses of on-orbit satellite data. Though many models of the upper atmosphere perform the necessary specification, none provide the flexibility of computational efficiency, high accuracy, and complete specification. We introduce a parameterized, updated, and extended version of the GLobal AirglOW (GLOW) model, called GLOWfast, that significantly reduces computation time and provides comparable accuracy in upper atmospheric ionization, densities, and conductivity. We extend GLOW capabilities by (1) implementing the nitric oxide empirical model, (2) providing a new model component to calculate height-dependent conductivity profiles from first principles for the 80–200 km region, and (3) reducing computation time. The computational improvement is achieved by replacing the full, two-stream electron transport algorithm with two parameterizations: (1) photoionization (QRJ from Solomon and Qian (2005)) and (2) electron impact ionization (F0810 from Fang et al. (2008, 2010)). We find that GLOWfast accurately reproduces ionization rates, ion and electron densities, and Pedersen and Hall conductivities independent of the background atmospheric state and input solar and auroral activity. Our results suggest that GLOWfast may be even more appropriate for low characteristic energy auroral conditions. We demonstrate in a suite of 3028 case studies that GLOWfast can be used to rapidly calculate the ionization of the upper atmosphere with few limitations on background and input conditions. We support these results through comparisons with electron density profiles from COSMIC.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2015 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author McGranaghan, Ryan
Knipp, Delores
Solomon, Stanley
Fang, Xiaohua
Publisher UCAR/NCAR - Library
Publication Date 2015-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:00:03.214122
Metadata Record Identifier edu.ucar.opensky::articles:16806
Metadata Language eng; USA
Suggested Citation McGranaghan, Ryan, Knipp, Delores, Solomon, Stanley, Fang, Xiaohua. (2015). A fast, parameterized model of upper atmospheric ionization rates, chemistry, and conductivity. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d72n53gq. Accessed 25 March 2025.

Harvest Source