A field intercomparison technique to improve the relative accuracy of longwave radiation measurements and an evaluation of CASES-99 pyrgeometer data quality

Techniques for improving the relative accuracy of longwave radiation measurements by a set of pyrgeometers [the Eppley Laboratory Precision Infrared Radiometer (Model PIR)] are presented using 10 PIRs from the 1999 Cooperative Atmosphere-Surface Exchange Study (CASES-99). The least squares-based optimization technique uses a field intercomparison (i.e., a time period during which all the PIRs were upward looking and set up side by side) to determine a set of optimization coefficients for each PIR. For the 10 CASES-99 PIRs, the optimization technique improved the standard deviation of the difference of downwelling irradiance between the PIRs from ±0.75 to ±0.4 W m⁻² (for nighttime data). In addition to presenting the optimization method, various PIR data quality checks are outlined and applied to the PIR data. Based on these quality checks, the measured case and dome temperatures of the CASES-99 PIRs were all reasonable. Using the 10 CASES-99 PIRs, simple estimates of the average nighttime net radiative flux divergence within the layer between 2 and 48 m were determined and resulted in cooling rates over a range from 0 to -1.3°C h⁻¹, depending on the assumptions made for the upwelling irradiance at 2 m. The effect of the coefficient optimization on the calculated net radiative flux divergence is explored.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2003 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Burns, Sean
Sun, Jielun
Delany, Anthony
Semmer, Steve
Oncley, Steven
Horst, Tom
Publisher UCAR/NCAR - Library
Publication Date 2003-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:38:07.283644
Metadata Record Identifier edu.ucar.opensky::articles:6127
Metadata Language eng; USA
Suggested Citation Burns, Sean, Sun, Jielun, Delany, Anthony, Semmer, Steve, Oncley, Steven, Horst, Tom. (2003). A field intercomparison technique to improve the relative accuracy of longwave radiation measurements and an evaluation of CASES-99 pyrgeometer data quality. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7qr4x8h. Accessed 19 March 2025.

Harvest Source