A general approach for deriving the properties of cirrus and stratiform ice cloud particles

A new approach is described for calculating the mass (m) and terminal velocity (Vt) of ice particles from airborne and balloon-borne imaging probe data as well as its applications for remote sensing and modeling studies. Unlike past studies that derived these parameters from the maximum (projected) dimension (D) and habit alone, the "two-parameter approach" uses D and the particle's projected cross-sectional area (A). Expressions were developed that relate the area ratio (Ar; the projected area of an ice particle normalized by the area of a circle with diameter D) to its effective density (ᵨe) and to Vt. Habit-dependent, power-law relationships between ᵨe and Ar were developed using analytic representations of the geometry of various types of planar and spatial ice crystals. Relationships were also derived from new or reanalyzed data for single ice particles and aggregates observed in clouds and at the ground. The mass relationships were evaluated by comparing calculations to direct measurements of ice water content (IWC). The calculations were from Particle Measuring Systems (PMS) 2D-C and 2D-P probes of particle size distributions in ice cloud layers on 3 days during an Atmospheric Radiation Measurement (ARM) field campaign in Oklahoma; the direct measurements were from counterflow virtual impactor (CVI) observations in ice cloud layers during the field campaign. Agreement was generally to within 20%, whereas using previous mass-dimension relationship approaches usually produced larger differences. Comparison of ground-based measurements of radar reflectivity with calculations from collocated balloon-borne ice crystal measurements also showed that the new method accurately captured the vertical reflectivity structure. Improvements in the accuracy of the estimates from the earlier mass-dimension relationships were achieved by converting them to the new form. A new, more accurate mass-dimension relationship for spatial, cirrus-type crystals was deduced from the comparison. The relationship between Vt and Ar was derived from a combination of theory and observations. A new expression accounting for the drag coefficients of large aggregates was developed from observational data. Explicit relationships for calculating Vt as a function of D for aggregates with a variety of component crystals were developed.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2002 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Heymsfield, Andrew
Lewis, Sharon
Bansemer, Aaron
Iaquinta, Jean
Miloshevich, Larry
Kajikawa, Masahiro
Twohy, Cynthia
Poellot, Michael
Publisher UCAR/NCAR - Library
Publication Date 2002-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:08:58.755340
Metadata Record Identifier edu.ucar.opensky::articles:17607
Metadata Language eng; USA
Suggested Citation Heymsfield, Andrew, Lewis, Sharon, Bansemer, Aaron, Iaquinta, Jean, Miloshevich, Larry, Kajikawa, Masahiro, Twohy, Cynthia, Poellot, Michael. (2002). A general approach for deriving the properties of cirrus and stratiform ice cloud particles. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7dn46cb. Accessed 12 May 2025.

Harvest Source