A machine learning enhanced approach for automated sunquake detection in acoustic emission maps

Sunquakes are seismic emissions visible on the solar surface, associated with some solar flares. Although discovered in 1998, they have only recently become a more commonly detected phenomenon. Despite the availability of several manual detection guidelines, to our knowledge, the astrophysical data produced for sunquakes is new to the field of machine learning. Detecting sunquakes is a daunting task for human operators, and this work aims to ease and, if possible, to improve their detection. Thus, we introduce a dataset constructed from acoustic egression-power maps of solar active regions obtained for Solar Cycles 23 and 24 using the holography method. We then present a pedagogical approach to the application of machine-learning representation methods for sunquake detection using autoencoders, contrastive learning, object detection and recurrent techniques, which we enhance by introducing several custom, domain-specific data augmentation transformations. We address the main challenges of the automated sunquake-detection task, namely the very high noise patterns in and outside the active region shadow and the extreme class imbalance given by the limited number of frames that present sunquake signatures. With our trained models, we find temporal and spatial locations of peculiar acoustic emission and qualitatively associate them to eruptive and high energy emission. While noting that these models are still in a prototype stage, and there is much room for improvement in metrics and bias levels, we hypothesize that their agreement on example use cases has the potential to enable detection of weak solar acoustic manifestations.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Mercea, Vanessa
Paraschiv, Alin Razvan
Lacatus, Daniela Adriana
Marginean, Anca
Besliu-Ionescu, Diana
Publisher UCAR/NCAR - Library
Publication Date 2023-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:40:59.080924
Metadata Record Identifier edu.ucar.opensky::articles:26010
Metadata Language eng; USA
Suggested Citation Mercea, Vanessa, Paraschiv, Alin Razvan, Lacatus, Daniela Adriana, Marginean, Anca, Besliu-Ionescu, Diana. (2023). A machine learning enhanced approach for automated sunquake detection in acoustic emission maps. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d78056hq. Accessed 21 March 2025.

Harvest Source