A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses

The effectiveness of the ensemble Kalman filter (EnKF) for assimilating radar observations at convective scales is investigated for cases whose behaviors span supercellular, linear, and multicellular organization. The parallel EnKF algorithm of the Data Assimilation Research Testbed (DART) is used for data assimilation, while the Weather Research and Forecasting (WRF) Model is employed as a simplified cloud model at 2-km horizontal grid spacing. In each case, reflectivity and radial velocity measurements are utilized from a single Weather Surveillance Radar-1988 Doppler (WSR-88D) within the U.S. operational network. Observations are assimilated every 2 min for a duration of 60 min and correction of folded radial velocities occurs within the EnKF. Initial ensemble uncertainty includes random perturbations to the horizontal wind components of the initial environmental sounding. The EnKF performs effectively and with robust results across all the cases. Over the first 18-30 min of assimilation, the rms and domain-averaged prior fits to observations in each case improve significantly from their initial levels, reaching comparable values of 3 - 6 m s⁻¹ and 7 - 10 dBZ. Representation of mesoscale uncertainty, albeit in the simplest form of initial sounding perturbations, is a critical part of the assimilation system, as it increases ensemble spread and improves filter performance. In addition, assimilation of "no precipitation" observations (i.e., reflectivity observations with values small enough to indicate the absence of precipitation) serves to suppress spurious convection in ensemble members. At the same time, it is clear that the assimilation is far from optimal, as the ensemble spread is consistently smaller than what would be expected from the innovation statistics and the assumed observation-error variance.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2009 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Aksoy, Altuğ
Dowell, David
Snyder, Chris
Publisher UCAR/NCAR - Library
Publication Date 2009-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:56:36.020414
Metadata Record Identifier edu.ucar.opensky::articles:15410
Metadata Language eng; USA
Suggested Citation Aksoy, Altuğ, Dowell, David, Snyder, Chris. (2009). A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7f47q54. Accessed 26 January 2025.

Harvest Source