A multivariate global spatiotemporal stochastic generator for climate ensembles

In order to understand and quantify the uncertainties in projections and physics of a climate model, a collection of climate simulations (an ensemble) is typically used. Given the high-dimensionality of the input space of a climate model, as well as the complex, nonlinear relationships between the climate variables, a large ensemble is often required to accurately assess these uncertainties. If only a small number of climate variables are of interest at a specified spatial and temporal scale, the computational and storage expenses can be substantially reduced by training a statistical model on a small ensemble. The statistical model then acts as a stochastic generator (SG) able to simulate a large ensemble, given a small training ensemble. Previous work on SGs has focused on modeling and simulating individual climate variables (e.g., surface temperature, wind speed) independently. Here, we introduce a SG that jointly simulates three key climate variables. The model is based on a multistage spectral approach that allows for inference of more than 80 million data points for a nonstationary global model, by conducting inference in stages and leveraging large-scale parallelization across many processors. We demonstrate the feasibility of jointly simulating climate variables by training the SG on five ensemble members from a large ensemble project and assess the SG simulations by comparing them to the ensemble members not used in training. Supplementary materials accompanying this paper appear online.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 Author(s)


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Edwards, Matthew
Castruccio, Stefano
Hammerling, Dorit
Publisher UCAR/NCAR - Library
Publication Date 2019-09-15T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:08:38.916604
Metadata Record Identifier edu.ucar.opensky::articles:22775
Metadata Language eng; USA
Suggested Citation Edwards, Matthew, Castruccio, Stefano, Hammerling, Dorit. (2019). A multivariate global spatiotemporal stochastic generator for climate ensembles. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7057k2f. Accessed 25 January 2025.

Harvest Source