A new and inexpensive non-bit-for-bit solution reproducibility test based on time step convergence (TSC1.0)

A test procedure is proposed for identifying numerically significant solution changes in evolution equations used in atmospheric models. The test issues a "fail" signal when any code modifications or computing environment changes lead to solution differences that exceed the known time step sensitivity of the reference model. Initial evidence is provided using the Community Atmosphere Model (CAM) version 5.3 that the proposed procedure can be used to distinguish rounding-level solution changes from impacts of compiler optimization or parameter perturbation, which are known to cause substantial differences in the simulated climate. The test is not exhaustive since it does not detect issues associated with diagnostic calculations that do not feedback to the model state variables. Nevertheless, it provides a practical and objective way to assess the significance of solution changes. The short simulation length implies low computational cost. The independence between ensemble members allows for parallel execution of all simulations, thus facilitating fast turnaround. The new method is simple to implement since it does not require any code modifications. We expect that the same methodology can be used for any geophysical model to which the concept of time step convergence is applicable.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Wan, Hui
Zhang, Kai
Rasch, Philip J.
Singh, Balwinder
Chen, Xingyuan
Edwards, James
Publisher UCAR/NCAR - Library
Publication Date 2017-02-03T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:10:55.056650
Metadata Record Identifier edu.ucar.opensky::articles:19549
Metadata Language eng; USA
Suggested Citation Wan, Hui, Zhang, Kai, Rasch, Philip J., Singh, Balwinder, Chen, Xingyuan, Edwards, James. (2017). A new and inexpensive non-bit-for-bit solution reproducibility test based on time step convergence (TSC1.0). UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7pn97f1. Accessed 17 March 2025.

Harvest Source