A new K–ε turbulence parameterization for mesoscale meteorological models

A new one-dimensional 1.5-order planetary boundary layer (PBL) scheme, based on the K-epsilon turbulence closure applied to the Reynolds-averaged Navier-Stokes (RANS) equations, is developed and implemented within the Weather Research and Forecasting (WRF) Model. The new scheme includes an analytic solution of the coupled equations for turbulent kinetic energy and dissipation rate. Different versions of the PBL scheme are proposed, with increasing levels of complexity, including a model for the calculation of the Prandtl number, a correction to the dissipation rate equation, and a prognostic equation for the temperature variance. Five different idealized cases are tested: four of them explore convective conditions, and they differ in initial thermal stratification and terrain complexity, while one simulates the very stable boundary layer case known as GABLS. For each case study, an ensemble of different large-eddy simulations (LES) is taken as reference for the comparison with the novel PBL schemes and other state-of-the-art 1- and 1.5-order turbulence closures. Results show that the new PBL K-epsilon scheme brings improvements in all the cases tested in this study. Specifically, the more significant are obtained with the turbulence closure including a prognostic equation for the temperature variance. Moreover, the largest benefits are obtained for the idealized cases simulating a typical thermal circulation within a two-dimensional valley. This suggests that the use of prognostic equations for dissipation rate and temperature variance, which take into account their transport and history, is particularly important with the increasing complexity of PBL dynamics.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2022 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zonato, Andrea
Martilli, Alberto
Jimenez, Pedro A.
Dudhia, Jimy
Zardi, Dino
Giovannini, Lorenzo
Publisher UCAR/NCAR - Library
Publication Date 2022-08-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:41:06.362835
Metadata Record Identifier edu.ucar.opensky::articles:25790
Metadata Language eng; USA
Suggested Citation Zonato, Andrea, Martilli, Alberto, Jimenez, Pedro A., Dudhia, Jimy, Zardi, Dino, Giovannini, Lorenzo. (2022). A new K–ε turbulence parameterization for mesoscale meteorological models. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7cc14gn. Accessed 13 February 2025.

Harvest Source