A numerical study of the response of ionospheric electron temperature to geomagnetic activity

The response of ionospheric electron temperatures to geomagnetic activity has been simulated using the Thermosphere-Ionosphere Nested Grid (TING) model. The cause of this response has been analyzed using a new postprocessor for the TING model that looks at the individual physical terms that drive the electron energy equation. It is found that (1) electron temperatures are significantly enhanced in regions of depleted electron densities, especially inside the middle-latitude electron density trough. The most pronounced electron temperature enhancement occurs at the equatorward edge of the trough; (2) this enhancement is produced by heat flux from the plasmasphere, coupled with the effect of the relatively low thermal electron gas heat capacity there and the inefficient heat conduction in the bottomside of the F region, where electron densities have almost vanished; (3) in regions of enhanced electron densities, electron temperatures are significantly decreased as a result of enhanced energy loss to the ions; this prevents the electron temperature "morning overshoot" from occurring in the middle and low latitudes; (4) upwelling of molecular-species-rich air from the lower thermosphere to higher altitudes during the storm increases mixing ratios of the neutral molecular species in the F region, thus enhances the relative contribution of the neutral molecular species to the overall electron cooling there; (5) ion frictional heating increases high-latitude F region ion temperatures during geomagnetic storms, causing the ions to transfer energy to the electrons and thus enhancing electron temperatures; and (6) there are no significant electron temperature increases in the E region during the storm because of the rapid energy loss from the electrons to the neutrals.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2006 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Wang, Wenbin
Burns, Alan
Killeen, Timothy
Publisher UCAR/NCAR - Library
Publication Date 2006-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:39:45.597798
Metadata Record Identifier edu.ucar.opensky::articles:7494
Metadata Language eng; USA
Suggested Citation Wang, Wenbin, Burns, Alan, Killeen, Timothy. (2006). A numerical study of the response of ionospheric electron temperature to geomagnetic activity. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7416xc3. Accessed 12 May 2025.

Harvest Source