A radar radial velocity dealiasing algorithm for radar data assimilation and its evaluation with observations from multiple radar networks

Automated and accurate radar dealiasing algorithms are very important for their assimilation into operational numerical weather forecasting models. A radar radial velocity dealiasing algorithm aimed at radar data assimilation is introduced and assessed using from several S-band and C-band radar observations under the severe weather conditions of hurricanes, typhoons, and deep continental convection in this paper. This dealiasing algorithm, named automated dealiasing for data assimilation (ADDA), is a further development of the dealiasing algorithm named the China radar network (CINRAD) improved dealiasing algorithm (CIDA), originally developed for China's CINRAD (China Next Generation Weather Radar) radar network. The improved scheme contains five modules employed to remove noisy data, select the suitable first radial, preserve the convective regions, execute multipass dealiasing in both azimuthal and radial directions and conduct the final local dealiasing with an error check. This new dealiasing algorithm was applied to two hurricane cases, two typhoon cases, and three intense-convection cases that were observed from the CINRAD of China, Taiwan's radar network, and NEXRAD (Next Generation Weather Radar) of the U.S. with a continuous period of more than 12 h for each case. The dealiasing results demonstrated that ADDA performed better than CIDA for all selected cases. This algorithm not only produced a high success rate for the S-band radar, but also a reasonable performance for the C-band radar.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author He, Guangxin
Sun, Juanzhen
Ying, Zhuming
Zhang, Lejian
Publisher UCAR/NCAR - Library
Publication Date 2019-10-22T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:35:34.687554
Metadata Record Identifier edu.ucar.opensky::articles:22991
Metadata Language eng; USA
Suggested Citation He, Guangxin, Sun, Juanzhen, Ying, Zhuming, Zhang, Lejian. (2019). A radar radial velocity dealiasing algorithm for radar data assimilation and its evaluation with observations from multiple radar networks. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7xk8jqf. Accessed 18 March 2025.

Harvest Source