A unified modeling approach to climate system prediction

There is a new perspective of a continuum of prediction problems, with a blurring of the distinction between short-term predictions and long-term climate projections. At the heart of this new perspective is the realization that all climate system predictions, regardless of time scale, share common processes and mechanisms; moreover, interactions across time and space scales are fundamental to the climate system itself. Further, just as seasonal-to-interannual predictions start from an estimate of the state of the climate system, there is a growing realization that decadal and longer-term climate predictions could be initialized with estimates of the current observed state of the atmosphere, oceans, cryosphere, and land surface. Even though the prediction problem itself is seamless, the best practical approach to it may be described as unified: models aimed at different time scales and phenomena may have large commonality but place emphasis on different aspects of the system. The potential benefits of this commonality are significant and include improved predictions on all time scales and stronger collaboration and shared knowledge, infrastructure, and technical capabilities among those in the weather and climate prediction communities.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2009 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hurrell, James
Meehl, Gerald
Bader, D.
Delworth, T.
Kirtman, B.
Wielicki, B.
Publisher UCAR/NCAR - Library
Publication Date 2009-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:56:51.426222
Metadata Record Identifier edu.ucar.opensky::articles:15231
Metadata Language eng; USA
Suggested Citation Hurrell, James, Meehl, Gerald, Bader, D., Delworth, T., Kirtman, B., Wielicki, B.. (2009). A unified modeling approach to climate system prediction. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7js9rgt. Accessed 25 March 2025.

Harvest Source