Adaptive localization for satellite radiance observations in an ensemble Kalman filter

Localization is essential to effectively assimilate satellite radiances in ensemble Kalman filters. However, the vertical location and separation from a model grid point variable for a radiance observation are not well defined, which results in complexities when localizing the impact of radiance observations. An adaptive method is proposed to estimate an effective vertical localization independently for each assimilated channel of every satellite platform. It uses sample correlations between ensemble priors of observations and state variables from a cycling data assimilation to estimate the localization function that minimizes the sampling error. The estimated localization functions are approximated by three localization parameters: the localization width, maximum value, and vertical location of the radiance observations. Adaptively estimated localization parameters are used in assimilation experiments with the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) model and the National Oceanic and Atmospheric Administration (NOAA) operational ensemble Kalman filter (EnKF). Results show that using the adaptive localization width and vertical location for radiance observations is more beneficial than also including the maximum localization value. The experiment using the adaptively estimated localization width and vertical location performs better than the default Gaspari and Cohn (GC) experiment, and produces similar errors to the optimal GC experiment. The adaptive localization parameters can be computed during the assimilation procedure, so the computational cost needed to tune the optimal GC localization width is saved.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Lei, Lili
Whitaker, Jeffrey S.
Anderson, Jeffrey L.
Tan, Zhemin
Publisher UCAR/NCAR - Library
Publication Date 2020-08-07T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:11:52.025266
Metadata Record Identifier edu.ucar.opensky::articles:23627
Metadata Language eng; USA
Suggested Citation Lei, Lili, Whitaker, Jeffrey S., Anderson, Jeffrey L., Tan, Zhemin. (2020). Adaptive localization for satellite radiance observations in an ensemble Kalman filter. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7mc938r. Accessed 21 March 2025.

Harvest Source