Advanced two-moment bulk microphysics for global models. Part I: Off-line tests and comparison with other schemes

Prognostic precipitation is added to a cloud microphysical scheme for global climate models. Results indicate very similar performance to other commonly used mesoscale schemes in an offline driver for idealized warm rain cases, better than the previous version of the global model microphysics scheme with diagnostic precipitation. In the mixed phase regime, there is significantly more water and less ice, which may address a common bias seen with the scheme in climate simulations in the Arctic. For steady forcing cases, the scheme has limited sensitivity to time step out to the ~15-min time steps typical of global models. The scheme is similar to other schemes with moderate sensitivity to vertical resolution. The limited time step sensitivity bodes well for use of the scheme in multiscale models from the mesoscale to the large scale. The scheme is sensitive to idealized perturbations of cloud drop and crystal number. Precipitation decreases and condensate increases with increasing drop number, indicating substantial decreases in precipitation efficiency. The sensitivity is less than with the previous version of the scheme for low drop number concentrations (Nc < 100 cm⁻³). Ice condensate increases with ice number, with large decreases in liquid condensate as well for a mixed phase case. As expected with prognostic precipitation, accretion is stronger than with diagnostic precipitation and the accretion to autoconversion ratio increases faster with liquid water path (LWP), in better agreement with idealized models and earlier studies than the previous version.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Gettelman, Andrew
Morrison, Hugh
Publisher UCAR/NCAR - Library
Publication Date 2015-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:59:49.855584
Metadata Record Identifier edu.ucar.opensky::articles:16504
Metadata Language eng; USA
Suggested Citation Gettelman, Andrew, Morrison, Hugh. (2015). Advanced two-moment bulk microphysics for global models. Part I: Off-line tests and comparison with other schemes. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d73779v2. Accessed 12 May 2025.

Harvest Source