Advanced two-moment bulk microphysics for global models. Part II: Global model solutions and aerosol-cloud interactions

A modified microphysics scheme is implemented in the Community Atmosphere Model, version 5 (CAM5). The new scheme features prognostic precipitation. The coupling between the microphysics and the rest of the model is modified to make it more flexible. Single-column tests show the new microphysics can simulate a constrained drizzling stratocumulus case. Substepping the cloud condensation (macrophysics) within a time step improves single-column results. Simulations of mixed-phase cases are strongly sensitive to ice nucleation. The new microphysics alters process rates in both single-column and global simulations, even at low (200 km) horizontal resolution. Thus, prognostic precipitation can be important, even in low-resolution simulations where advection of precipitation is not important. Accretion dominates as liquid water path increases in agreement with cloud-resolving model simulations and estimates from observations. The new microphysics with prognostic precipitation increases the ratio of accretion over autoconversion. The change in process rates appears to significantly reduce aerosol-cloud interactions and indirect radiative effects of anthropogenic aerosols by up to 33% (depending on substepping) to below 1 W m⁻² of cooling between simulations with preindustrial (1850) and present-day (2000) aerosol emissions.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Gettelman, Andrew
Morrison, Hugh
Santos, Sean
Bogenschutz, Peter
Caldwell, P.
Publisher UCAR/NCAR - Library
Publication Date 2015-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:06:20.667233
Metadata Record Identifier edu.ucar.opensky::articles:16502
Metadata Language eng; USA
Suggested Citation Gettelman, Andrew, Morrison, Hugh, Santos, Sean, Bogenschutz, Peter, Caldwell, P.. (2015). Advanced two-moment bulk microphysics for global models. Part II: Global model solutions and aerosol-cloud interactions. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7bp03zx. Accessed 25 March 2025.

Harvest Source