Advection on cut-cell grids for an idealized mountain of constant slope

Cut cells use regular or nearly regular polygonal cells to describe fields. For a given orography, some cells may be completely under the mountain, some completely above the mountain, and some are partially filled with air. While there are reports indicating considerably improved simulations with cut cells, inaccuracies may arise with some approximations, producing noise in fields near the surface. This behavior may depend strongly on the approximations made for the advection terms near the surface. This paper investigates the accuracy of advection for numerical schemes for a nondivergent flow near a mountain surface. The schemes use C-grid staggering with densities located at cell centers or on the corners of cells. Also, a nonconserving scheme is considered, which was used in the past with real-data cut-cell simulations. Since the cut cells near the surface create an irregular resolution, the accuracy and order of some approximations may break down near the surface. The objective of this paper is to find schemes having the same accuracy for advection near the surface as in the interior of the domain. As a test problem, uniform advection by a nondivergent velocity field is used with a 45 degrees slope mountain (represented as a straight line) on a rectangular grid. Along the surface a sequence of triangular and pentagonal cells of quite different sizes are generated. Some schemes being discussed for cut cells lead to inaccurate and noisy solutions for this perfectly smooth mountain. A scheme using piecewise linear basis functions in a C grid with density points at the cell corners avoids these inaccuracies.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Steppeler, J.
Klemp, Joseph B.
Publisher UCAR/NCAR - Library
Publication Date 2017-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:14:27.472898
Metadata Record Identifier edu.ucar.opensky::articles:19735
Metadata Language eng; USA
Suggested Citation Steppeler, J., Klemp, Joseph B.. (2017). Advection on cut-cell grids for an idealized mountain of constant slope. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7rb76dx. Accessed 21 March 2025.

Harvest Source