Aerosol microphysical impact on summertime convective precipitation in the Rocky Mountain region

We present an aerosol-cloud-precipitation modeling study of convective clouds using the Weather Research and Forecasting model fully coupled with Chemistry (WRF-Chem) version 3.1.1. Comparison of the model output with measurements from a research site in the Rocky Mountains in Colorado revealed that the fraction of organics in the model is underpredicted. This is most likely due to missing processes in the aerosol module in the model version used, such as new particle formation and growth of secondary organic aerosols. When boundary conditions and domain-wide initial conditions of aerosol loading are changed in the model (factors of 0.1, 0.2, and 10 of initial aerosol mass of SO4-2, NH4+, and NO3-), the domain-wide precipitation changes by about 5%. Analysis of the model results reveals that the Rocky Mountain region and Front Range environment is not conducive for convective invigoration to play a major role, in increasing precipitation, as seen in some other studies. When localized organic aerosol emission are increased to mimic new particle formation, the resulting increased aerosol loading leads to increases in domain-wide precipitation, opposite to what is seen in the model simulations with changed boundary and initial conditions.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2014 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Eidhammer, Trude
Barth, Mary
Petters, Markus
Wiedinmyer, Christine
Prenni, Anthony
Publisher UCAR/NCAR - Library
Publication Date 2014-10-27T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:44:25.534905
Metadata Record Identifier edu.ucar.opensky::articles:14476
Metadata Language eng; USA
Suggested Citation Eidhammer, Trude, Barth, Mary, Petters, Markus, Wiedinmyer, Christine, Prenni, Anthony. (2014). Aerosol microphysical impact on summertime convective precipitation in the Rocky Mountain region. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7mg7qg5. Accessed 22 June 2025.

Harvest Source