Aerosol-radiation-cloud interactions in a regional coupled model: The effects of convective parameterisation and resolution

The Weather Research and Forecasting model with Chemistry (WRF-Chem) has been used to simulate a region of Brazil heavily influenced by biomass burning. Nested simulations were run at 5 and 1 km horizontal grid spacing for three case studies in September 2012. Simulations were run with and without fire emissions, convective parameterisation on the 5 km domain, and aerosol–radiation interactions in order to explore the differences attributable to the parameterisations and to better understand the aerosol direct effects and cloud responses. Direct aerosol–radiation interactions due to biomass burning aerosol resulted in a net cooling, with an average short-wave direct effect of -4.08 ± 1.53 Wm⁻². However, around 21.7 Wm⁻² is absorbed by aerosol in the atmospheric column, warming the atmosphere at the aerosol layer height, stabilising the column, inhibiting convection, and reducing cloud cover and precipitation. The changes to clouds due to radiatively absorbing aerosol (traditionally known as the semi-direct effects) increase the net short-wave radiation reaching the surface by reducing cloud cover, producing a secondary warming that counters the direct cooling. However, the magnitude of the semi-direct effect was found to be extremely sensitive to the model resolution and the use of convective parameterisation. Precipitation became organised in isolated convective cells when not using a convective parameterisation on the 5 km domain, reducing both total cloud cover and total precipitation. The SW semi-direct effect varied from 6.06 ± 1.46 with convective parameterisation to 3.61 ± 0.86 Wm⁻² without. Convective cells within the 1 km domain are typically smaller but with greater updraft velocity than equivalent cells in the 5 km domain, reducing the proportion of the domain covered by cloud in all scenarios and producing a smaller semi-direct effect. Biomass burning (BB) aerosol particles acted as cloud condensation nuclei (CCN), increasing the droplet number concentration of clouds. However, the changes to cloud properties had negligible impact on the net radiative balance in either domain, with or without convective parameterisation. The sensitivity to the uncertainties relating to the semi-direct effect was greater than any other observable indirect effects. Although the version of WRF-Chem distributed to the community currently lacks aerosol–cloud interactions in parameterised clouds, the results of this study suggest a greater priority for the development is to improve the modelling of semi-direct effects by reducing the uncertainties relating to the use of convective parameterisation and resolution before WRF-Chem can reliably quantify the regional impacts of aerosols.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 Authors. This work is distributed under the Creative Commons Attribution 3.0 License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Archer Nicholls, Scott
Lowe, Douglas
Schultz, David
McFiggans, Gordon
Publisher UCAR/NCAR - Library
Publication Date 2016-05-04T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-04-14T21:23:48.074371
Metadata Record Identifier edu.ucar.opensky::articles:18498
Metadata Language eng; USA
Suggested Citation Archer Nicholls, Scott, Lowe, Douglas, Schultz, David, McFiggans, Gordon. (2016). Aerosol-radiation-cloud interactions in a regional coupled model: The effects of convective parameterisation and resolution. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7s75hzb. Accessed 03 June 2023.

Harvest Source