An analytic description of the structure and evolution of growing deep cumulus updrafts

New theoretical analytic expressions are derived for the evolution of a passive scalar, buoyancy, and vertical velocity in growing, entraining moist deep convective updrafts. These expressions are a function of updraft radius, height, convective available potential energy (CAPE), and environmental relative humidity RH. They are quantitatively consistent with idealized three-dimensional moist updraft simulations with varying updraft sizes and in environments with differing RH. In particular, the analytic expressions capture the rapid decrease of buoyancy with height due to entrainment for narrow updrafts in a dry environment despite large CAPE. In contrast to the standard entraining-plume model, the theoretical expressions also describe the effects of engulfment of environmental air between the level of free convection (LFC) and height of maximum buoyancy (HMB) required by mass continuity to balance upward acceleration of updraft air (i.e., dynamic entrainment). This organized inflow sharpens horizontal gradients, thereby enhancing smaller-scale lateral turbulent mixing below the HMB. For narrow updrafts in a dry environment, this enhanced mixing leads to a negatively buoyant region between the LFC and HMB, effectively cutting off the region of positive buoyancy at the HMB from below so that the updraft structure resembles a rising thermal rather than a plume. Thus, it is proposed that a transition from plume-like to thermal-like structure is driven by dynamic entrainment and depends on updraft width (relative to height) and environmental RH. These results help to bridge the entraining-plume and rising-thermal conceptual models of moist convection.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Morrison, Hugh
Publisher UCAR/NCAR - Library
Publication Date 2017-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:14:24.823236
Metadata Record Identifier edu.ucar.opensky::articles:19728
Metadata Language eng; USA
Suggested Citation Morrison, Hugh. (2017). An analytic description of the structure and evolution of growing deep cumulus updrafts. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d79c707h. Accessed 27 June 2025.

Harvest Source