An approach for probabilistic forecasting of seasonal turbidity threshold exceedance

Though climate forecasts offer substantial promise for improving water resource oversight, additional tools are needed to translate these forecasts into water-quality-based products that can be useful to water utility managers. To this end, a generalized approach is developed that uses seasonal forecasts to predict the likelihood of exceeding a prescribed water quality limit. Because many water quality standards are based on thresholds, this study utilizes a logistic regression technique, which employs nonparametric or “local” estimation that can capture nonlinear features in the data. The approach is applied to a drinking water source in the Pacific Northwest United States that has experienced elevated turbidity values that are correlated with streamflow. The main steps of the approach are to (1) obtain a seasonal probabilistic precipitation forecast, (2) generate streamflow scenarios conditional on the precipitation forecast, (3) use a local logistic regression to compute the turbidity threshold exceedance probabilities, and (4) quantify the likelihood of turbidity exceedance corresponding to the seasonal climate forecast. Results demonstrate that forecasts offer a slight improvement over climatology, but that representative forecasts are conservative and result in only a small shift in total exceedance likelihood. Synthetic forecasts are included to show the sensitivity of the total exceedance likelihood. The technique is general and could be applied to other water quality variables that depend on climate or hydroclimate.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

An edited version of this paper was published by AGU. Copyright 2010 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Towler, Erin
Rajagopalan, Balaji
Summers, R.
Yates, David
Publisher UCAR/NCAR - Library
Publication Date 2010-06-15T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:43:17.614432
Metadata Record Identifier edu.ucar.opensky::articles:17198
Metadata Language eng; USA
Suggested Citation Towler, Erin, Rajagopalan, Balaji, Summers, R., Yates, David. (2010). An approach for probabilistic forecasting of seasonal turbidity threshold exceedance. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7gh9k6s. Accessed 17 March 2025.

Harvest Source