An array of low‐cost, high‐speed, autonomous electric field mills for thunderstorm research

The atmospheric electric field is an important research parameter in understanding storm electrification and energy exchange between lightning and the atmosphere across the globe. The near-surface electric field can range from a few V/m (order of 10-100 V/m), mainly produced by the currents in the global electric circuit and local charge perturbations, to tens of kV/m in the presence of electrified clouds. The electric field mill (EFM), a variable capacitance electrometer, has been the instrument of choice in the atmospheric electricity community studying phenomena associated with the atmospheric electric field. The EFM is particularly useful in following storm movement and evolution, monitoring the fair-weather electric field at distant locations, and measuring the vertical electric field inside clouds with EFM deployments on balloons. In this paper, we describe a new electric field mill ground-based design, which focuses on lowering the manufacturing and operational costs of doing research with an array of EFM instruments while maintaining the scientific capabilities offered by past designs and commercially available devices. The theory of operation, data processing, and calibration of the instrument are also described. Example data from the first generation of these new field mills, deployed in the RELAMPAGO campaign in Argentina, are presented here. The RELAMPAGO deployment and data set illustrate important strengths of this design, for example, cost, autonomy, longevity, and measurement quality.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Antunes de Sá, A.
Marshall, R.
Sousa, A.
Viets, A.
Deierling, Wiebke
Publisher UCAR/NCAR - Library
Publication Date 2020-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:09:25.586217
Metadata Record Identifier edu.ucar.opensky::articles:23857
Metadata Language eng; USA
Suggested Citation Antunes de Sá, A., Marshall, R., Sousa, A., Viets, A., Deierling, Wiebke. (2020). An array of low‐cost, high‐speed, autonomous electric field mills for thunderstorm research. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7cv4n2f. Accessed 09 February 2025.

Harvest Source