An evaluation of ENSO asymmetry in the community climate system models: A view from the subsurface

The asymmetry between El Niño and La Niña is a key aspect of ENSO that needs to be simulated well by models in order to fully capture the role of ENSO in the climate system. Here the asymmetry between the two phases of ENSO in five successive versions of the Community Climate System Model (CCSM1, CCSM2, CCSM3 at T42 resolution, CCSM3 at T85 resolution, and the latest CCSM3 + NR, with the Neale and Richter convection scheme) is evaluated. Different from the previous studies, not only is the surface signature of ENSO asymmetry examined, but so too is its subsurface signature. By comparing the differences among these models as well as the differences between the models and the observations, an understanding of the causes of the ENSO asymmetry is sought. An underestimate of the ENSO asymmetry is noted in all of the models, but the latest version with the Neale and Richter scheme (CCSM3 + NR) is getting closer to the observations than the earlier versions. The net surface heat flux is found to damp the asymmetry in the SST field in both the models and observations, but the damping effect in the models is weaker than that in the observations, thus excluding a role of the surface heat flux in contributing to the weaker asymmetry in the SST anomalies associated with ENSO. Examining the subsurface signatures of ENSO - the thermocline depth and the associated subsurface temperature for the western and eastern Pacific - reveals the same bias; that is, the asymmetry in the models is weaker than that in the observations. The analysis of the corresponding Atmospheric Model Intercomparison Project (AMIP) runs in conjunction with the coupled runs suggests that the weaker asymmetry in the subsurface signatures in the models is related to the lack of asymmetry in the zonal wind stress over the central Pacific, which in turn is due to a lack of sufficient asymmetry in deep convection (i.e., the nonlinear dependence of the deep convection on SST). In particular, the lack of a westward shift in the deep convection in the models in response to a cold phase SST anomaly is found as a common factor that is responsible for the weak asymmetry in the models. It is also suggested that a more eastward extension of the deep convection in response to a warm phase SST anomaly may also help to increase the asymmetry of ENSO. The better performance of CCSM3 + NR is apparently linked to an enhanced convection over the eastern Pacific during the warm phase of ENSO. Apparently, either a westward shift of deep convection in response to a cold phase SST anomaly or an increase of convection over the eastern Pacific in response to a warm phase SST anomaly leads to an increase in the asymmetry of zonal wind stress and therefore an increase in the asymmetry of subsurface signal, favoring an increase in ENSO asymmetry.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2009 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Neale, Richard
Zhang, Tao
Sun, De-Zheng
Rasch, Philip
Publisher UCAR/NCAR - Library
Publication Date 2009-11-15T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:57:04.085212
Metadata Record Identifier edu.ucar.opensky::articles:15207
Metadata Language eng; USA
Suggested Citation Neale, Richard, Zhang, Tao, Sun, De-Zheng, Rasch, Philip. (2009). An evaluation of ENSO asymmetry in the community climate system models: A view from the subsurface. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7np25fk. Accessed 25 March 2025.

Harvest Source