An example of the use of mobile, Doppler radar data for tornado verification

On 16 May 2003, two ground-based, mobile, Doppler radars scanned a potentially tornadic supercell in the Texas Panhandle intermittently from ∼0200 to 0330 UTC. The storm likely was tornadic, but because it was dark, visual confirmation of any tornadoes was not possible. A damage survey was completed after the storm moved through the area. The final conclusion of the damage survey prior to this analysis was that there were two tornadoes near Shamrock, Texas: one that formed prior to 0300 UTC and one that formed at or after 0300 UTC. High-resolution, mobile, Doppler radar data of the supercell were compared with the damage survey information at different times. The location of the first tornado damage path was not consistent with the locations of the low-level circulations in the supercell identified through the mobile, Doppler radar data. The damage within the first path, which consisted mostly of downed trees, may have been caused by straight-line winds in a squall line that moved through the area after the passage of the supercell. The mobile, Doppler radar data did not provide any supporting evidence for the first tornado, but the data did support the existence of the second tornado in Wheeler County on the evening of 15 May 2003. Ground-based, mobile, Doppler radar data may be used as an important tool to help to confirm (or deny) tornado damage reports in situations in which a damage survey cannot be completed or in which the survey does not provide clear evidence as to what phenomenon caused the damage.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2009 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author French, Michael
Bluestein, Howard
Wicker, Louis
Dowell, David
Kramar, Matthew
Publisher UCAR/NCAR - Library
Publication Date 2009-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:22:31.736756
Metadata Record Identifier edu.ucar.opensky::articles:15406
Metadata Language eng; USA
Suggested Citation French, Michael, Bluestein, Howard, Wicker, Louis, Dowell, David, Kramar, Matthew. (2009). An example of the use of mobile, Doppler radar data for tornado verification. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7z320pk. Accessed 09 December 2024.

Harvest Source