An investigation comparing ground-based techniques that quantify auroral electron flux and conductance

We present three case studies that examine optical and radar methods for specifying precipitating auroral flux parameters and conductances. Three events were chosen corresponding to moderate nonsubstorm auroral activity with 557.7 nm intensities greater than 1kR. A technique that directly fits the electron number density from a forward electron transport model to alternating code incoherent scatter radar data is presented. A method for determining characteristic energy using neutral temperature observations is compared against estimates from the incoherent scatter radar. These techniques are focused on line-of-sight observations that are aligned with the local geomagnetic field. Good agreement is found between the optical and incoherent scatter radar methods for estimates of the average energy, energy flux, and conductances. The Pedersen conductance predicted by Robinson et al. (1987) is in very good agreement with estimates calculated from the incoherent scatter radar observations. However, we present an updated form of the relation by Robinson et al. (1987), ΣH/ΣP=0.57〈E〉0.53, which was found to be more consistent with the incoherent scatter radar observations. These results are limited to similar auroral configurations as in these case studies. Case studies are presented that quantify auroral electron flux parameters and conductance estimates which can be used to specify the magnitude of energy dissipated within the ionosphere resulting from magnetospheric driving.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2015 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Kaeppler, S.
Hampton, D.
Nicolls, M.
Stromme, A.
Solomon, Stanley
Hecht, J.
Conde, M.
Publisher UCAR/NCAR - Library
Publication Date 2015-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:06:30.306390
Metadata Record Identifier edu.ucar.opensky::articles:17655
Metadata Language eng; USA
Suggested Citation Kaeppler, S., Hampton, D., Nicolls, M., Stromme, A., Solomon, Stanley, Hecht, J., Conde, M.. (2015). An investigation comparing ground-based techniques that quantify auroral electron flux and conductance. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7ns0w89. Accessed 20 January 2025.

Harvest Source