Analysis and prediction of a squall line observed during IHOP using multiple WSR-88D observations

This paper presents a case study on the assimilation of observations from multiple Doppler radars of the Next Generation Weather Radar (NEXRAD) network. A squall-line case documented during the International H2O Project (IHOP_2002) is used for the study. Radar radial velocity and reflectivity observations from four NEXRADs are assimilated into a convection-permitting model using a four-dimensional variational data assimilation (4DVAR) scheme. A mesoscale analysis using a supplementary sounding, velocity-azimuth display (VAD) profiles, and surface observations from Meteorological Aerodrome Reports (METAR) are produced and used to provide a background and boundary conditions for the 4DVAR radar data assimilation. Impact of the radar data assimilation is assessed by verifying the skill of the subsequent very short-term (5 h) forecasts. Assimilation and forecasting experiments are conducted to examine the impact of radar data assimilation on the subsequent precipitation forecasts. It is found that the 4DVAR radar data assimilation significantly reduces the model spinup required in the experiments without radar data assimilation, resulting in significantly improved 5-h forecasts. Additional experiments are conducted to study the sensitivity of the precipitation forecasts with respect to 4DVAR cycling configurations. Results from these experiments suggest that the forecasts with three 4DVAR cycles are improved over those with cold start, but the cycling impact seems to diminish with more cycles. The impact of observations from each of the individual radars is also examined by conducting a set of experiments in which data from each radar are alternately excluded. It is found that the accurate analysis of the environmental wind surrounding the convective cells is important in successfully predicting the squall line.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2008 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC ยง108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Sun, Juanzhen
Zhang, Ying
Publisher UCAR/NCAR - Library
Publication Date 2008-07-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:38:05.912221
Metadata Record Identifier edu.ucar.opensky::articles:6129
Metadata Language eng; USA
Suggested Citation Sun, Juanzhen, Zhang, Ying. (2008). Analysis and prediction of a squall line observed during IHOP using multiple WSR-88D observations. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7gb2461. Accessed 17 April 2025.

Harvest Source